
© Copyright IBM Corporation 2008 Trademarks
Anatomy of Linux dynamic libraries Page 1 of 9

Anatomy of Linux dynamic libraries
Process and API

M. Tim Jones August 20, 2008

Dynamically linked shared libraries are an important aspect of GNU/Linux®. They allow
executables to dynamically access external functionality at run time and thereby reduce their
overall memory footprint (by bringing functionality in when it's needed). This article investigates
the process of creating and using dynamic libraries, provides details on the various tools for
exploring them, and explores how these libraries work under the hood.

More in Tim's Anatomy of... series on developerWorks

• Anatomy of Linux journaling file systems
• Anatomy of Linux flash file systems
• Anatomy of Security-Enhanced Linux (SELinux)
• Anatomy of real-time Linux architectures
• All of Tim's Anatomy of... articles
• All of Tim's articles on developerWorks

Libraries were designed to package similar functionality in a single unit. These units could then
be shared with other developers and permitted what came to be called modular programming—
that is, building programs from modules. Linux supports two types of libraries, each with its
own advantages and disadvantages. The static library contains functionality that is bound to a
program statically at compile time. This differs from dynamic libraries, which are loaded when an
application is loaded and binding occurs at run time. Figure 1 shows the library hierarchy in Linux.

Figure 1. Library hierarchy in Linux

You can use shared libraries in a couple of ways: either linked dynamically at run time or
dynamically loaded and used under program control. This article explores both of these methods.

http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/developerworks/ibm/trademarks/
http://www.ibm.com/developerworks/linux/library/l-journaling-filesystems/
http://www.ibm.com/developerworks/linux/library/l-flash-filesystems/
http://www.ibm.com/developerworks/linux/library/l-selinux/
http://www.ibm.com/developerworks/linux/library/l-real-time-linux/
http://www.ibm.com/developerworks/views/linux/libraryview.jsp?topic_by=All+topics+and+related+products&sort_order=desc&lcl_sort_order=desc&search_by=anatomy&search_flag=true&type_by=Articles&show_abstract=true&start_no=1&sort_by=Date&end_no=100&show_all=false
http://www.ibm.com/developerworks/views/linux/libraryview.jsp?topic_by=All+topics+and+related+products&sort_order=desc&lcl_sort_order=desc&search_by=tim+jones&search_flag=true&type_by=Articles&show_abstract=false&sort_by=Date&end_no=100&show_all=false

developerWorks® ibm.com/developerWorks/

Anatomy of Linux dynamic libraries Page 2 of 9

Static libraries can be beneficial in small programs where minimal functionality is needed. For
programs that require multiple libraries, shared libraries can reduce the memory footprint of the
program (both on disk and in memory at run time). This is because multiple programs can use a
shared library simultaneously; therefore, only one copy of the library is needed in memory at a
time. With a static library, every running program has its own copy of the library.

GNU/Linux provides two ways to deal with shared libraries (each method originating from Sun
Solaris). You can dynamically link your program with the shared library and have Linux load
the library upon execution (unless it's already in memory). An alternative is for the program to
selectively call functions with the library in a process called dynamic loading. With dynamic
loading, a program can load a specific library (unless already loaded), and then call a particular
function within that library. (Figure 2 shows these two methods.) This is a common usage pattern
in building applications that support plugins. I explore this application program interface (API) and
demonstrate it later in the article.

Figure 2. Static vs. dynamic linking

Dynamic linking with Linux

Now, let's dig into the process of using dynamically linked shared libraries in Linux. When users
start an application, they're invoking an Executable and Linking Format (ELF) image. The kernel
begins with the process of loading the ELF image into user space virtual memory. The kernel
notices an ELF section called .interp, which indicates the dynamic linker to be used (/lib/ld-
linux.so), shown in Listing 1. This is similar to the interpreter definition for script files in UNIX® (#!/
bin/sh): It's just used in a different context.

ibm.com/developerWorks/ developerWorks®

Anatomy of Linux dynamic libraries Page 3 of 9

Listing 1. Using readelf to show program headers

mtj@camus:~/dl$ readelf -l dl

Elf file type is EXEC (Executable file)
Entry point 0x8048618
There are 7 program headers, starting at offset 52

Program Headers:
 Type Offset VirtAddr PhysAddr FileSiz MemSiz Flg Align
 PHDR 0x000034 0x08048034 0x08048034 0x000e0 0x000e0 R E 0x4
 INTERP 0x000114 0x08048114 0x08048114 0x00013 0x00013 R 0x1
 [Requesting program interpreter: /lib/ld-linux.so.2]
 LOAD 0x000000 0x08048000 0x08048000 0x00958 0x00958 R E 0x1000
 LOAD 0x000958 0x08049958 0x08049958 0x00120 0x00128 RW 0x1000
 DYNAMIC 0x00096c 0x0804996c 0x0804996c 0x000d0 0x000d0 RW 0x4
 NOTE 0x000128 0x08048128 0x08048128 0x00020 0x00020 R 0x4
 GNU_STACK 0x000000 0x00000000 0x00000000 0x00000 0x00000 RW 0x4

 ...

mtj@camus:~dl$

Note that ld-linux.so is itself an ELF shared library, but it is statically compiled and has no shared
library dependencies. When dynamic linking is needed, the kernel bootstraps the dynamic linker
(ELF interpreter), which initializes itself, and then loads the specified shared objects (unless
already loaded). It then performs the necessary relocations, including the shared objects that the
target shared object uses. The LD_LIBRARY_PATH environment variable defines where to look for the
available shared objects. When done, control is transferred back to the original program to begin
its execution.

Relocation is handled through an indirection mechanism called the Global Offset Table (GOT) and
the Procedure Linkage Table (PLT). These tables provide the addresses of external functions and
data, which ld-linux.so loads during the relocation process. This means that the code that requires
the indirection (that is, uses the tables) needs no changes: only the tables require adjustment.
Relocation can occur immediately upon load or whenever a given function is needed. (See more
on this difference later in Dynamic loading with Linux.)

When the relocations are complete, the dynamic linker allows any loaded shared object to execute
optional initialization code. This functionality allows the library to initialize internal data and prepare
for use. This code is defined in the .init section of the ELF image. When the library is unloaded,
it may also call a termination function (defined as the .fini section in the image). When the
initialization functions have been called, the dynamic linker relinquishes control to the original
image being loaded.

Dynamic loading with Linux

Instead of Linux automatically loading and linking libraries for a given program, it's possible to
share this control with the application itself. In this case, the process is called dynamic loading.
With dynamic loading, the application can specify a particular library to load, and then use this
library as an executable (that is, call the functions within it). But as you learned earlier, the shared
library used for dynamic loading is no different than that of a standard shared library (an ELF

developerWorks® ibm.com/developerWorks/

Anatomy of Linux dynamic libraries Page 4 of 9

shared object). In fact, the ld-linux dynamic linker remains involved in this process as the ELF
loader and interpreter.

The Dynamic Loading (DL) API exists for dynamic loading and allows a shared library to be
available to a user-space program. Although small, the API provides everything needed, with much
of the hard work done behind the scenes. The full API is shown in Table 1.

Table 1. The Dl API

Function Description

dlopen Makes an object file accessible to a program

dlsym Obtains the address of a symbol within a dlopened
object file

dlerror Returns a string error of the last error that occurred

dlclose Closes an object file

The process begins with a call to dlopen, providing the file object to access and a mode. The
result of the dlopen call is a handle to the object that will be used later. The mode argument tells the
dynamic linker when to perform relocations. There are two possible values. The first, RTLD_NOW,
indicates that the dynamic linker will complete all necessary relocations at the dlopen call time.
The second and alternative mode, RTLD_LAZY, says to perform relocations only when they're
needed. This is done internally by redirecting all requests that are yet to be relocated through
the dynamic linker. In this way, the dynamic linker knows at request time when a new reference
is occurring, and relocation occurs normally. Subsequent calls do not require a repeat of the
relocation.

Two other mode options are available that may be bitwise ORed into the mode argument.
RTLD_LOCAL indicates that the symbols of the shared object being loaded won't be made available
for relocation processing by any other object. If this is what you want (for example, so that the
shared object can invoke symbols in the original process image), use RTLD_GLOBAL.

The dlopen function also automatically resolves dependencies in shared libraries. In this way, if
you open an object that is dependent upon other shared libraries, it automatically loads them. The
function returns a handle that is used in subsequent calls to the API. The prototype for dlopen is:

#include <dlfcn.h>

void *dlopen(const char *file, int mode);

With a handle to the ELF object, you can identify addresses to symbols within this object using the
dlsym call. This function takes a symbol name, such as the name of a function contained within the
object. The return value is a resolved address to the symbol within the object:

void *dlsym(void *restrict handle, const char *restrict name);

ibm.com/developerWorks/ developerWorks®

Anatomy of Linux dynamic libraries Page 5 of 9

If an error occurs during a call with this API, you can use the dlerror function to return a human-
readable string representing the error. This function has no arguments and returns a string if a
prior error occurred or returns NULL if no error occurred:

char *dlerror();

Finally, when no additional calls to the shared object are necessary, the application can call
dlclose to inform the operating system that the handle and object references are no longer
necessary. This is properly reference-counted, so that multiple users of a shared object do not
conflict with one another (it remains in memory as long as there is a user for it). Any symbols
resolved through dlsym for the closed object will no longer be available.

char *dlclose(void *handle);

Dynamic loading example
Now that you've seen the API, let's look at an example of the DL API. In this application, you
basically implement a shell that allows the operator to specify a library, a function, and an
argument. In other words, the user can specify a library and call an arbitrary function within
that library (that wasn't previously linked to this application). You resolve the function within the
library using the DL API, and then call it with the user-defined argument (emitting the result). The
complete application is shown in Listing 2.

Listing 2. Shell for using the DL API
#include <stdio.h>
#include <dlfcn.h>
#include <string.h>

#define MAX_STRING 80

void invoke_method(char *lib, char *method, float argument)
{
 void *dl_handle;
 float (*func)(float);
 char *error;

 /* Open the shared object */
 dl_handle = dlopen(lib, RTLD_LAZY);
 if (!dl_handle) {
 printf("!!! %s\n", dlerror());
 return;
 }

 /* Resolve the symbol (method) from the object */
 func = dlsym(dl_handle, method);
 error = dlerror();
 if (error != NULL) {
 printf("!!! %s\n", error);
 return;
 }

 /* Call the resolved method and print the result */
 printf(" %f\n", (*func)(argument));

 /* Close the object */
 dlclose(dl_handle);

developerWorks® ibm.com/developerWorks/

Anatomy of Linux dynamic libraries Page 6 of 9

 return;
}

int main(int argc, char *argv[])
{
 char line[MAX_STRING+1];
 char lib[MAX_STRING+1];
 char method[MAX_STRING+1];
 float argument;

 while (1) {

 printf("> ");

 line[0]=0;
 fgets(line, MAX_STRING, stdin);

 if (!strncmp(line, "bye", 3)) break;

 sscanf(line, "%s %s %f", lib, method, &argument);

 invoke_method(lib, method, argument);

 }

}

To build this application, use the following compile line with the GNU Compiler Collection (GCC).
The option -rdynamic is used to tell the linker to add all symbols to the dynamic symbol table (to
permit backtraces with the use of dlopen). The -ldl indicates that the dllib should be linked to
this program.

gcc -rdynamic -o dl dl.c -ldl

Back to Listing 2, the main function simply acts as the interpreter, parsing three arguments from the
input line (library name, function name, floating-point argument). If bye is present, the application
exits. Otherwise, the three arguments are passed to the invoke_method function, which uses the
DL API.

You start with a call to dlopen to gain access to the object file. If a NULL handle is returned, the
object could not be found and the process ends. Otherwise, you have a handle to the object that
can be further interrogated. Using the dlsym API function, attempt to resolve the symbol within the
newly opened object file. You'll get either a valid pointer to the symbol or a NULL and return an
error.

With the symbol resolved in the ELF object, the next step is simply to call the function. Note the
difference between this code and the previous discussion of dynamic linking. In this example,
you coerce the address of the symbol in the object file to a function pointer, and then call it. The
previous example used the object's name as a function, and the dynamic linker ensures that the
symbol points to the proper location. Although the dynamic linker can do all the dirty work for you,
this approach allows you to build very dynamic applications that can be extended at run time.

ibm.com/developerWorks/ developerWorks®

Anatomy of Linux dynamic libraries Page 7 of 9

After you've called your target function in the ELF object, close access to it through a call to
dlclose.

An example of how to use this test program is shown in Listing 3. In this example, you compile and
then execute the program. Then, you invoke a few functions within the math library (libm.so). From
this demonstration, the program is able to call arbitrary functions within a shared object (library)
using dynamic loading. This is a powerful capability and permits the extension of programs with
new functionality.

Listing 3. Using the simple program to invoke library functions

mtj@camus:~/dl$ gcc -rdynamic -o dl dl.c -ldl
mtj@camus:~/dl$./dl
> libm.so cosf 0.0
 1.000000
> libm.so sinf 0.0
 0.000000
> libm.so tanf 1.0
 1.557408
> bye
mtj@camus:~/dl$

Tools

Linux provides a variety of tools for viewing and parsing ELF objects (including shared libraries).
One of the most useful is the ldd command, which you use to emit shared library dependencies.
For example, using the ldd command on your dl application shows the following:

mtj@camus:~/dl$ ldd dl
 linux-gate.so.1 => (0xffffe000)
 libdl.so.2 => /lib/tls/i686/cmov/libdl.so.2 (0xb7fdb000)
 libc.so.6 => /lib/tls/i686/cmov/libc.so.6 (0xb7eac000)
 /lib/ld-linux.so.2 (0xb7fe7000)
mtj@camus:~/dl$

What ldd is telling you is that this ELF image is dependent upon linux-gate.so (a special shared
object that handles system calls and has no associated file in the file system), libdl.so (the DL
API), the GNU C library (libc.so), and finally the Linux dynamic loader (as there are shared library
dependencies).

The readelf command is a feature-rich utility that allows you to parse and read ELF objects.
One interesting use of readelf is to identify the relocatable items within an object. For our simple
program (shown in Listing 2), you can see the symbols that require relocation as:

developerWorks® ibm.com/developerWorks/

Anatomy of Linux dynamic libraries Page 8 of 9

mtj@camus:~/dl$ readelf -r dl

Relocation section '.rel.dyn' at offset 0x520 contains 2 entries:
 Offset Info Type Sym.Value Sym. Name
08049a3c 00001806 R_386_GLOB_DAT 00000000 __gmon_start__
08049a78 00001405 R_386_COPY 08049a78 stdin

Relocation section '.rel.plt' at offset 0x530 contains 8 entries:
 Offset Info Type Sym.Value Sym. Name
08049a4c 00000207 R_386_JUMP_SLOT 00000000 dlsym
08049a50 00000607 R_386_JUMP_SLOT 00000000 fgets
08049a54 00000b07 R_386_JUMP_SLOT 00000000 dlerror
08049a58 00000c07 R_386_JUMP_SLOT 00000000 __libc_start_main
08049a5c 00000e07 R_386_JUMP_SLOT 00000000 printf
08049a60 00001007 R_386_JUMP_SLOT 00000000 dlclose
08049a64 00001107 R_386_JUMP_SLOT 00000000 sscanf
08049a68 00001907 R_386_JUMP_SLOT 00000000 dlopen
mtj@camus:~/dl$

From this list, you can see the various C library calls that require relocation (to libc.so), including
calls to the DL API (libdl.so). The function __libc_start_main is a C library function that is called
prior to the main function of your program (a shell that provides necessary initialization).

Other utilities that operate on object files include objdump, which displays information about
object files, and nm, which lists the symbols from object files (including debug information). It's
also possible to invoke the Linux dynamic linker directly with the ELF program as its argument to
manually start the image:

mtj@camus:~/dl$ /lib/ld-linux.so.2 ./dl
> libm.so expf 0.0
 1.000000
>

Additionally, you can use ld-linux.so to list the dependencies of an ELF image (identically to
the ldd command) by using the --list option. Remember, it's just a user-space program that's
bootstrapped by the kernel when needed.

Going further

This article scratched the surface of some of the capabilities of the dynamic linker. In the Related
topics below, you'll find more detailed introductions to the ELF image format and the process or
symbol relocation. And, as is always the case with Linux, you can download the source to the
dynamic linker (see Related topics) to dig into its internals.

ibm.com/developerWorks/ developerWorks®

Anatomy of Linux dynamic libraries Page 9 of 9

Related topics

• Download the source for the Linux dynamic linker from Debian. This is the ultimate source of
information for dynamic linking and dynamic loading.

• SkyFree.org provides a great introduction to ELF (PDF) covering object files, program loading,
and the C library. Wikipedia also provides a short description of ELF and many links to
additional resources for ELF (specifications and interfaces for many processor architectures).

• The Chris Rohlf's EM_386 blog gives a detailed description of ELF symbol resolution and
all its gory details. It explains the GOT and PLT tables and their manipulation by the Linux
dynamic linker.

• Wikipedia has good resources on libraries and static libraries. You can also learn about linkers
and loaders and their relationship to libraries.

• The Linux Journal article "Linkers and Loaders" (November 2002) provides a great
introduction to the purpose behind linkers and loaders using ELF files (including symbol
resolution and relocation).

• See all Linux tips and Linux tutorials on developerWorks.

© Copyright IBM Corporation 2008
(www.ibm.com/legal/copytrade.shtml)
Trademarks
(www.ibm.com/developerworks/ibm/trademarks/)

http://packages.debian.org/source/sarge/ld.so
http://www.skyfree.org/
http://www.skyfree.org/linux/references/ELF_Format.pdf
http://en.wikipedia.org/wiki/Executable_and_Linkable_Format
http://em386.blogspot.com/2006/10/resolving-elf-relocation-name-symbols.html
http://en.wikipedia.org/wiki/Library_(computing)
http://en.wikipedia.org/wiki/Static_library
http://en.wikipedia.org/wiki/Linker
http://en.wikipedia.org/wiki/Loader_(computing)
http://www.linuxjournal.com/article/6463
http://www.ibm.com/developerworks/views/linux/libraryview.jsp?topic_by=All+topics+and+related+products&sort_order=desc&lcl_sort_order=desc&search_by=linux+tip%3A&search_flag=true&type_by=All+Types&show_abstract=true&start_no=1&sort_by=Date&end_no=100&show_all=false
http://www.ibm.com/developerworks/views/linux/libraryview.jsp?topic_by=All+topics+and+related+products&sort_order=desc&lcl_sort_order=desc&search_by=&search_flag=&type_by=Tutorials&show_abstract=true&sort_by=Date&end_no=100&show_all=false
http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/developerworks/ibm/trademarks/

	Table of Contents
	Dynamic linking with Linux
	Dynamic loading with Linux
	Dynamic loading example
	Tools
	Going further
	Trademarks

