
 Rossano Pablo Pinto - http://rossano.pro.br

Linux Process Control
Signals and Signal Handling in programs

Prof. Rossano Pablo Pinto
March 2014 - v0.1
March 2017 - v0.8

 Rossano Pablo Pinto - http://rossano.pro.br

Agenda

● Introduction
● Linux booting - 1st Proc. Creation
● Process Attributes
● Linux Process States
● Listing Processes
● Signals (Controlling processes)
● Using signals in programs
● Threads

 Rossano Pablo Pinto - http://rossano.pro.br

Introduction

● Multiprogramming systems use an abstraction
to control several concurrent running programs:

● Each process can create other processes

PROCESS

PROCESS

PROCESS
PROCESS PROCESS

Parent/Child relation
on Linux Systems

 Rossano Pablo Pinto - http://rossano.pro.br

Introduction : Process Definition

● Definition (a simple one): a running program!
● Definition (a not so simple one):

● An address space +
● A set of kernel data structures to keep information

about the running program. Ex.:
– The process address space map
– The process current state, execution priority
– resources, signal mask
– Process owner ….

● Reminder: PCB (Process Control Block)

 Rossano Pablo Pinto - http://rossano.pro.br

Introduction

How are processes created ?

Is there a life-cycle ?

How are they controlled ?

 Rossano Pablo Pinto - http://rossano.pro.br

Introduction

How are processes created ?
– 1st process: kernel creates the first process
– 2nd + are created by OTHER PROCESSES

Is there a life-cycle ?
– Yes. In each stage of the life-cycle, the process is in a

different STATE.

How are they controlled ?
– Using SIGNALS

 Rossano Pablo Pinto - http://rossano.pro.br

Linux booting:
1st Process creation

 Rossano Pablo Pinto - http://rossano.pro.br

Linux booting - 1st Proc. Creation

● Basic concepts
● Kernel space

– Kernel
● User space

– Init
● All services

● Hardware support in PC
for multiprogramming
● IA32e (AMD64) + EFI

– Protected mode
– Memory protection
– 4 rings of protection
– Instructions:

Priviledged x

non-priviledged

 Rossano Pablo Pinto - http://rossano.pro.br

Linux booting - 1st Proc. Creation
● Example: Linux/IA32e (AMD64) with UEFI and GRUB

● Power-on (real-mode)
● CPU fetches first instruction <- ROM (UEFI)
● UEFI switches processor to protected-mode
● UEFI switches processor to Long (64 bits)
● UEFI looks for a partition of type ESP (EFI System Partition -

EF00)
● UEFI loads an EFI application (for instance, GRUB)
● GRUB loads the linux kernel to the memory and hands-off the

control to Linux
● Linux executes a bunch of routines to configure itself
● The very last thing Linux does during initialization is the creation

of the first process of the system:
● the init
● /usr/src/linux-4.4.5/init/main.c (line 960)

 Rossano Pablo Pinto - http://rossano.pro.br

Linux booting - 1st Proc. Creation
// /usr/src/linux-4.4.5/init/main.c (line 960):
if (execute_command) {
 ret = run_init_process(execute_command);
 if (!ret)
 return 0;
 panic("Requested init %s failed (error %d).",
 execute_command, ret);
}
if (!try_to_run_init_process("/sbin/init") ||
 !try_to_run_run_init_process("/etc/init") ||
 !try_to_run_init_process("/bin/init") ||
 !try_to_run_init_process("/bin/sh"))
 return 0;

panic("No working init found. Try passing init= option to kernel."
 “See Linux Documentation/init.txt for guidance.”);

 Rossano Pablo Pinto - http://rossano.pro.br

Linux booting - 1st Proc. Creation
● systemd reads the directories

/usr/lib/systemd/system, /etc/systemd/system
and /etc/systemd/system/[name.type].d/*.conf,
and loads all services that must run at boot time

● systemd becomes the father (grandfather/great
grandfather...) of all processes of the system:

systemd

 Rossano Pablo Pinto - http://rossano.pro.br

Process Attributes

● Process Important Attributes:
● PID (Process IDentification)
● PPID (Parent Process IDentification)
● UID (User ID)
● EUID (Effective User ID)
● Status
● Niceness
● Control Terminal

 Rossano Pablo Pinto - http://rossano.pro.br

Process Attributes

● /proc filesystem
● An interface to get and configure the system

attributes
● /proc/[PID]/

– Information for the process with PID. Some files:

cmdline - the complete command line for the process

stat - Status information about the process (used by
ps - see ps reading /proc with strace ps |& grep /proc)

status - information in /proc/[pid]/stat and /proc/
[pid]/statm in a format that's easier for humans

 Rossano Pablo Pinto - http://rossano.pro.br

– … Information for the process with PID. Some files:

maps - currently mapped memory regions and their
access permissions

Example:

ps ax | grep emacs

16002 pts/0 S 0:14 emacs create-timelapse.sh
cat /proc/16002/maps

 Output next page

Process Attributes

 Rossano Pablo Pinto - http://rossano.pro.br

08048000-0820c000 r-xp 00000000 08:01 17487 /usr/bin/emacs23-x

0820c000-08691000 rw-p 001c3000 08:01 17487 /usr/bin/emacs23-x

091a3000-09537000 rw-p 00000000 00:00 0 [heap]

b26c6000-b2726000 rw-s 00000000 00:04 6717478 /SYSV00000000 (deleted)

b2726000-b2741000 r--s 00000000 08:01 262568 /usr/share/mime/mime.cache

b2741000-b2f9f000 r--p 00000000 08:01 262580 /usr/share/icons/hicolor/icon-theme.cache

b2f9f000-b5f05000 r--p 00000000 08:01 294494 /usr/share/icons/gnome/icon-theme.cache

b5f05000-b6143000 r--p 00000000 08:01 261373 /usr/share/icons/Tango/icon-theme.cache

...

Process Attributes

 Rossano Pablo Pinto - http://rossano.pro.br

The second column provides the address space
permissions. The permissions are represented by
the following letters:

r = read

w = write

x = execute

s = shared

p = private (copy on write)

Process Attributes

 Rossano Pablo Pinto - http://rossano.pro.br

Linux Process States

● R = Running/ Runnable (on run queue)
● S = Sleeping
● Z = Zombie (not reaped by it's parent)
● D = Uninterruptible sleep (usually IO)
● T = Stopped
● t = Tracing stop
● X = dead (never appears or should never be seen)
● W = paging (not valid since 2.6.xx)

 Rossano Pablo Pinto - http://rossano.pro.br

Linux Process States

● Some flags
● < = Higher than normal priority
● N = Lower than normal priority
● L = pages r locked in memory (can't be paged out)
● s = session leader
● l = is multi-threaded (uses CLONE_THREAD flag in

clone syscal)
● + = is in the foreground process group

 Rossano Pablo Pinto - http://rossano.pro.br

Listing Processes

● Most common commands
● ps - instant system photography
● top - shows system photography every 5 seconds

(default)
● These programs depend on the proc filesystem

mounted on /proc
– systemd automatically mounts /proc
– with systemd it's not possible to umount /proc anymore as

it was with SysV init

– fuser -v -m /proc shows that PID 1 is using /proc (you
can only umount unused fs and you can't SIGKILL PID 1)

 Rossano Pablo Pinto - http://rossano.pro.br

Listing Processes

● ps examples (several others from 'man ps')
● ps - PID, TTY, TIME, CMD (from that shell only)

● ps aux - USER, PID, %CPU, %MEM, VSZ, RSS,
TTY, STAT, START, TIME, COMMAND

● ps ax - PID, TTY, STAT, TIME, COMMAND

● ps -ejH - PID, PGID, SID, TIME, CMD

● ps -auroot - PID, TTY, TIME, CMD (all processes
owned by root)

 Rossano Pablo Pinto - http://rossano.pro.br

Listing Processes

● ps example with customizable fields
● ps -Luroot -o ppid,pid,tid,stat,wchan,cmd

– Shows all processes from User root
– It shows the columns

● Parent Process ID
● Process ID
● Thread ID
● Status
● The name of the event the “S state” is waitng for
● Command line

 Rossano Pablo Pinto - http://rossano.pro.br

Signals (Controlling processes)

● What's out there as a process controlling
mechanism?
● Signals - it's a special message that is sent to a

process to sinalize some condition

● kill - command to send a signal to a process

● List available signals: kill -l
● man 7 signal

 Rossano Pablo Pinto - http://rossano.pro.br

Signals (Controlling processes)

● Important ones (bare minimal to master):
● SIGHUP (1) - nowadays, usually used to signal a

process to reread it's conf file
● SIGINT (2) - Ctrl-C from terminal (terminates the

process)
● SIGQUIT (3) - similar to SIGTERM but generates a

core dump (some programs catch this signal and do
some other thing...)

● SIGKILL (9) - destroy process from the kernel

 Rossano Pablo Pinto - http://rossano.pro.br

Signals (Controlling processes)

● Important ones (bare minimal to master):
● SIGSTOP (19) - gets it off from the run queue
● SIGTSTP(20) - Ctrl-Z/Terminal Stop
● SIGCONT (18) - reenables stopped process
● SIGSEGV (11) - sent by kernel to offending process
● SIGTERM (15) - similar to kill but gives a chance to

the process to terminate “nicelly” (for instance to do
some finishing task and invoke exit syscall)

 Rossano Pablo Pinto - http://rossano.pro.br

Signals (Controlling processes)

● Important ones (bare minimal to master):
● SIGUSR1 (10), SIGUSR2 (12) - They don't have a

default meaning
– Ex.: Apache uses SIGUSR1 as a request to restart

● Default behavior
● Programmed behavior (trapped/caught signals)
● “Untoucheable” behaviors - Ex.: SIGKILL and

SIGSTOP

 Rossano Pablo Pinto - http://rossano.pro.br

Signals (Controlling processes)

● Sending a signal to a process
● Most common programs: kill, pkill

● kill sintax

kill SIGNAL PID
● Example:

kill -SIGKILL [SOMEPROCESSID]

kill -9 [SOMEPROCESSID]

 Rossano Pablo Pinto - http://rossano.pro.br

Signals (Controlling processes)

xcalc &

pgrep xcalc (suppose it returns 5533)

kill -SIGSTOP 5533

ps ax | grep xcalc (observe the T status -
try to use the calculator)

kill -SIGCONT 5533

ps ax | grep xcalc (observe the S status -
try to use the calculator)

 Rossano Pablo Pinto - http://rossano.pro.br

Signals (Controlling processes)

kill -SIGKILL 5533

pgrep xcalc (process has died)

 Rossano Pablo Pinto - http://rossano.pro.br

Signals (Controlling processes)

● pkill sintax:
● pkill -SIGNAL [ATTRIBUTES]

● Example
● pkill -SIGHUP syslogd

– make syslog rereads its conf file
● pkill -SIGTERM -u albert

– sends a SIGTERM to all albert processes

 Rossano Pablo Pinto - http://rossano.pro.br

Using signals in programs
● Reminder: PID and PPID

00 /* Author: rossano at gmail dot com */
01 #include <stdio.h>
02 #include <unistd.h>
03
04 int main() {
05 printf("This process PID is %d\n", (int) getpid());
06 printf("This process PPID is %d\n", (int) getppid());
07 return 0;
08 }

 Rossano Pablo Pinto - http://rossano.pro.br

Using signals in programs
● Reminder: fork, parent/child relation

00 /* Author: rossano at gmail dot com */
01 #include <stdio.h>
02 #include <sys/types.h>
03 #include <unistd.h>
04
05 int main() {
06 pid_t pid=0;
07 printf("Parent PID is %d\n", (int) getpid());
08
09 pid = fork();
10 if(pid != 0) {
11 printf("This is the parent process, PID is %d\n", (int) getpid());
12 printf("Child PID is %d\n", (int) pid);
13 }
14 else printf("This is the child process, PID is %d\n", (int) getpid());
15 return 0;
16 }

 Rossano Pablo Pinto - http://rossano.pro.br

Using signals in programs
● Send signal to process: kill - man 2 kill

NAME
 kill - send signal to a process

SYNOPSIS
 #include <sys/types.h>
 #include <signal.h>
 int kill(pid_t pid, int sig);

DESCRIPTION
 The kill() system call can be used to send any signal to any process
 group or process.

 Rossano Pablo Pinto - http://rossano.pro.br

Using signals in programs
● Send signal to process: kill example:
//send_signal.c - Author: rossano at gmail dot com
#include <stdio.h> // printf
#include <stdlib.h> // atoi
#include <sys/types.h> // pid_t type definition used in kill syscall
#include <signal.h> // kill

int main(int argc, char **argv) {
 int sig=0, pid=0, ret=0;

 if (argc < 2) {
 printf("Usage: %s SIGNAL_NUMBER PID\n",argv[0]);
 exit(0);
 }

 sig=(int)atoi(argv[1]);
 pid=(int)atoi(argv[2]);
 ret=kill(pid, sig);

 return ret;
}

 Rossano Pablo Pinto - http://rossano.pro.br

Using signals in programs
● Send signal to process: kill example: Compile/test

gcc -o send_signal send_signal.c

xterm &

ps ax | grep xterm (returns the PID 23152)

./send_signal 19 23152 (it's the SIGSTOP)

ps ax | grep xterm (state changed to T)

./send_signal 18 23152 (it's the SIGCONT)

ps ax | grep xterm (state changed to S)

./send_signal 9 23152 (xterm is eliminated)

 Rossano Pablo Pinto - http://rossano.pro.br

Using signals in programs
● Control signal behavior: signal - man signal

SYNOPSIS

 #include <signal.h>

 typedef void (*sighandler_t)(int);

 sighandler_t signal(int signum, sighandler_t handler);

DESCRIPTION

 The behavior of signal() varies across Unix versions, and has also
varied historically across different versions of Linux. Avoid its use: use
sigaction(2) instead.

 Rossano Pablo Pinto - http://rossano.pro.br

Using signals in programs
● Control signal behavior: signal - man signal

SYNOPSIS

 #include <signal.h>

 typedef void (*sighandler_t)(int);

 sighandler_t signal(int signum, sighandler_t handler);

DESCRIPTION

 The behavior of signal() varies across Unix versions, and has also
varied historically across different versions of Linux. Avoid its use: use
sigaction(2) instead.

 Rossano Pablo Pinto - http://rossano.pro.br

Using signals in programs
● Control signal behavior: signal example (capture

CTRL-C from terminal):
// conf_signal.c - Author: rossano at gmail dot com
#include <stdio.h>
#include <signal.h>
#include <stdlib.h>
void my_sigint_handler() {
 int c;
 printf("Are you sure you want to terminate program [y/n]?");
 c = getchar();
 if(c == 'y') exit(0);
}
int main(int argc, char **argv) {
 signal(SIGINT, my_sigint_handler);
 while(1) {}
 return 0;
}

 Rossano Pablo Pinto - http://rossano.pro.br

Using signals in programs
● Control signal behavior: sigaction - man sigaction

NAME
 sigaction - examine and change a signal action

SYNOPSIS
 #include <signal.h>
 int sigaction(int signum, const struct sigaction *act,
 struct sigaction *oldact);

DESCRIPTION
 The sigaction() system call is used to change the action taken by a
 process on receipt of a specific signal. (See signal(7) for an overview of
 signals.)

 Rossano Pablo Pinto - http://rossano.pro.br

Using signals in programs
●Control signal behavior: sigaction example:

/* Author: rossano at gmail dot com */
#include <signal.h> // sig_atomic_t
#include <string.h> // memset
#include <stdio.h> // printf

sig_atomic_t counter = 0;

void my_handler(int signum) {
 ++counter;
 printf("I received signal %d\n",signum);
}

int main() {
 struct sigaction sa;
 memset(&sa, 0, sizeof(sa));
 sa.sa_handler = &my_handler;
 sigaction(SIGUSR1, &sa, NULL);

 while(counter < 3) {}

 printf("I received %d SIGUSR1 signals. Terminating!!!\n", counter);
 return 0;
}

 Rossano Pablo Pinto - http://rossano.pro.br

Using signals in programs
● Control signal behavior: sigaction example:

compile/test

gcc -o sigusr1 sigusr1.c

./sigusr1
● From another terminal:

pgrep sigusr1 (returns 23880)

kill -SIGUSR1 23880

kill -SIGUSR1 23880

kill -SIGUSR1 23880

 Rossano Pablo Pinto - http://rossano.pro.br

Using signals in programs
● For every kill -SIGUSR1 23880 from the other

terminal, the program sigusr1 prints:

“ I received signal 10”

● The last kill -SIGUSR1 23880 makes sigusr1
print:

“ I received signal 10”

“ I received 3 SIGUSR1 signals. Terminating!!!”

 Rossano Pablo Pinto - http://rossano.pro.br

Threads

● Linux creates SCHEDULING ENTITIES with the
system call CLONE or FORK
● FORK - used by glibc < 2.3.3 (uses wrapper fork())
● CLONE - used by glibc >= 2.3.3 (still uses wrapper fork())
● CLONE can be used to create PROCESSES and

THREADS
● CLONE offers several flags
● Depending on the flags, the created entity is called a

PROCESS or a THREAD

 Rossano Pablo Pinto - http://rossano.pro.br

Threads

● Syscall clone with flags SIGCHLD is equivalent
to a syscall fork.

 Rossano Pablo Pinto - http://rossano.pro.br

Threads: CLONE flags for
PROCESSES

● CLONE_PARENT_SETTID

● CLONE_CHILD_CLEAR_TID

● SIGCHILD

 Rossano Pablo Pinto - http://rossano.pro.br

Threads: CLONE flags for
THREADS < kernel 2.6

● CLONE_VM

● CLONE_FS

● CLONE_FILES

● CLONE_SIGHAND

 Rossano Pablo Pinto - http://rossano.pro.br

Threads: CLONE flags for
THREADS >= kernel 2.6

● CLONE_VM

● CLONE_FS

● CLONE_FILES

● CLONE_SIGHAND

● CLONE_THREAD

● CLONE_SYSVSEM

● CLONE_SETTLS

● CLONE_PARENT_SETTID

● CLONE_CHILD_CLEAR_TID

 Rossano Pablo Pinto - http://rossano.pro.br

Threads: Libraries

● POSIX.1 Specification
● Thread Libraries for Linux

● LinuxThreads
● NPTL (Native POSIX Threads Library)

● Both libraries are a 1:1 implementation (each thread
maps to a kernel scheduling entity)

● Both libraries uses CLONE in a way that a SIGKILL (and
other signals when each thread has the same signal
handlers) affects all the process threads (AS IT SHOULD
BE)

 Rossano Pablo Pinto - http://rossano.pro.br

Threads: LinuxThreads

● Original Pthreads Linux implementation
● Some compliance with POSIX
● No longer supported since glibc 2.4
● Each process (when multithreaded) is composed of:

main thread, “manager” thread, other threads
● Signals may be sent only to specific threads

● getpid() returns a DIFFERENT PID for each thread

 Rossano Pablo Pinto - http://rossano.pro.br

Threads: NPTL

● A little bit more compliant with POSIX
● Available since glibc 2.3.2
● Depends on kernel 2.6+
● Each process (when multithreaded) is composed of: main

thread, other threads
● Signals may be sent to

– specific threads (tgkill system call)
– process (kill system call)

● getpid() returns THE SAME PID for each thread

● Creation time is 4 times as fast as LinuxThreads

 Rossano Pablo Pinto - http://rossano.pro.br

Tests
//Author : rossano at gmail dot com

#include <pthread.h>

#include <stdio.h>

#include <unistd.h>

void *func1(void *uu) {

 while(1) {printf("func1 - %i\n",getpid());}

 return NULL;

}

void *func2(void *uu) {

 while(1) {printf("func2 - %i\n",getpid());}

 return NULL;

}

void *func3(void *uu) {

 while(1) {printf("func3 - %i\n",getpid());}

 return NULL;

}

int main() {

 pthread_t t1, t2, t3;

 pthread_create(&t1, NULL, &func1, &"x");

 pthread_create(&t2, NULL, &func2, &"x");

 pthread_create(&t3, NULL, &func3, &"x");

 while(1) {printf("Main - %i\n",getpid());}

 return 0;

}

 Rossano Pablo Pinto - http://rossano.pro.br

Tests

● gcc threads.c -o threads -pthread
● Terminal 1

– ./threads
● Terminal 2

– watch -n 1 ps -Luze o ppid,pid,tid,user,stat,command
– Obs.: uze means User ze

 Rossano Pablo Pinto - http://rossano.pro.br

Tests: Slackware 11 - LinuxThreads

●The program creates 3 threads. The total thread count
should be 4: Main thread + 3 threads! But it shows 5
threads !!!

●PID 2062 is the MAIN THREAD
● PID 2063 is the MANAGER THREAD
● 2064, 2065, 2066 are managed threads
● Observe PPIDs !
● What occurs if MANAGER THREAD is killed ?
 (kill -9 2063)

 Rossano Pablo Pinto - http://rossano.pro.br

Tests: Slackware 11 - LinuxThreads

●USING ANOTHER RUN of threads program:
●Main Thread: 4036
●Manager Thread: 4037
●kill -9 4037
●Manager thread becames a ZOMBIE
●All other threads are adopted by PID 1 (except the main thread)
●What occurs if I kill any other thread? (kill -9 4040)

 Rossano Pablo Pinto - http://rossano.pro.br

Tests: Slackware 11 - LinuxThreads

● What occurs if I kill any other thread? (kill -9 4040)
● Only it dies, as shown.... (thread with PID 4040 is not present
 anymore...)

 Rossano Pablo Pinto - http://rossano.pro.br

Tests: Slackware 11 - LinuxThreads

● What occurs if any other thread, other than the
manager thread, is killed?

– All other threads associatted with the manager thread is
killed, including the main thread.

● See manager thread code next slide!

 Rossano Pablo Pinto - http://rossano.pro.br

Tests: Slackware 11 - LinuxThreads
....

while(1) {

 n = __poll(&ufd, 1, 2000);

 /* Check for termination of the main thread */

 if (getppid() == 1) {

 pthread_kill_all_threads(SIGKILL, 0);

 _exit(0);

 }

 /* Check for dead children */

 if (terminated_children) {

 terminated_children = 0;

 pthread_reap_children();

 }

 /* Read and execute request */

 if (n == 1 && (ufd.revents & POLLIN)) {

 n = TEMP_FAILURE_RETRY(__libc_read(reqfd, (char
*)&request,

 sizeof(request)));

...

● Check the bold red
code!

– It shows that if the
manager thread is
adopted by PID 1, then
main thread is dead,
so kill all other threads.

– Something similar
occurs if any other
managed thread is
killed.

 Rossano Pablo Pinto - http://rossano.pro.br

Tests: slackware 14.2 - NPTL

●There is no manager thread
●If ANY thread is killed with the “kill” syscall, then
ANY other thread is killed. That's what expected for
a POSIX Thread.

 Rossano Pablo Pinto - http://rossano.pro.br

That's all

 Rossano Pablo Pinto - http://rossano.pro.br

Priorities (under construction!!!!!!!!!)

● It's all about priorities!!!
● It's possible to set soft priorities to Linux

processes (we do not touch REAL-TIME
priorities here)

● UNDER CONSTRUCTION

 Rossano Pablo Pinto - http://rossano.pro.br

A lot of stuff

● Credentials: man 7 credentials
● Process Group, Process Group Leader, Process

Session, Process Session Leader

● man 3 exit
● What happens when a process terminates?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60

