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Introduction

● Multiprogramming systems use an abstraction 
to control several concurrent running programs:

● Each process can create other processes

PROCESS

PROCESS

PROCESS
PROCESS PROCESS

Parent/Child relation
on Linux Systems
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Introduction : Process Definition

● Definition (a simple one): a running program!
● Definition (a not so simple one):

● An address space +
● A set of kernel data structures to keep information 

about the running program. Ex.:
– The process address space map
– The process current state, execution priority
– resources, signal mask
– Process owner ….

● Reminder: PCB (Process Control Block)
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Introduction

How are processes created ?

Is there a life-cycle ?

How are they controlled ?
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Introduction

How are processes created ?
– 1st process: kernel creates the first process
– 2nd + are created by OTHER PROCESSES

Is there a life-cycle ?
– Yes. In each stage of the life-cycle, the process is in a 

different STATE.

How are they controlled ?
– Using SIGNALS
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Linux booting:
1st Process creation
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Linux booting - 1st Proc. Creation

● Basic concepts
● Kernel space

– Kernel
● User space

– Init
● All services

● Hardware support in PC 
for multiprogramming
● IA32e (AMD64) + EFI

– Protected mode
– Memory protection
– 4 rings of protection
– Instructions: 

Priviledged x 

non-priviledged
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Linux booting - 1st Proc. Creation
● Example: Linux/IA32e (AMD64) with UEFI and GRUB

● Power-on (real-mode)
● CPU fetches first instruction <- ROM (UEFI)
● UEFI switches processor to protected-mode
● UEFI switches processor to Long (64 bits)
● UEFI looks for a partition of type ESP (EFI System Partition - 

EF00)
● UEFI loads an EFI application (for instance, GRUB)
● GRUB loads the linux kernel to the memory and hands-off the 

control to Linux
● Linux executes a bunch of routines to configure itself
● The very last thing Linux does during initialization is the creation 

of the first process of the system: 
● the init
● /usr/src/linux-4.4.5/init/main.c (line 960)
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Linux booting - 1st Proc. Creation
// /usr/src/linux-4.4.5/init/main.c (line 960):
if (execute_command) {
            ret = run_init_process(execute_command);
            if (!ret)
                     return 0;
            panic("Requested init %s failed  (error %d).",
                      execute_command, ret);
}
if (!try_to_run_init_process("/sbin/init") ||
     !try_to_run_run_init_process("/etc/init") ||
     !try_to_run_init_process("/bin/init") ||
     !try_to_run_init_process("/bin/sh"))
             return 0;

panic("No working init found.  Try passing init= option to kernel."
          “See Linux Documentation/init.txt for guidance.”);
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Linux booting - 1st Proc. Creation
● systemd reads the directories 

/usr/lib/systemd/system, /etc/systemd/system 
and /etc/systemd/system/[name.type].d/*.conf, 
and loads all services that must run at boot time

● systemd becomes the father (grandfather/great 
grandfather...) of all processes of the system:

systemd
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Process Attributes

● Process Important Attributes:
● PID (Process IDentification)
● PPID (Parent Process IDentification)
● UID (User ID)
● EUID (Effective User ID)
● Status
● Niceness
● Control Terminal
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Process Attributes

● /proc filesystem
● An interface to get and configure the system 

attributes
● /proc/[PID]/

– Information for the process with PID. Some files: 

cmdline - the complete command line for the process 

stat - Status information about the process (used by 
ps - see ps reading /proc with strace ps |& grep /proc) 

status - information in /proc/[pid]/stat and /proc/
[pid]/statm in a format that's easier for humans
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– … Information for the process with PID. Some files: 

maps - currently mapped memory regions and their 
access permissions

Example: 

ps ax | grep emacs

16002 pts/0    S      0:14 emacs create-timelapse.sh 
cat /proc/16002/maps

           Output next page

Process Attributes
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08048000-0820c000  r-xp   00000000 08:01 17487     /usr/bin/emacs23-x

0820c000-08691000  rw-p  001c3000 08:01 17487     /usr/bin/emacs23-x

091a3000-09537000  rw-p  00000000 00:00 0          [heap]

b26c6000-b2726000  rw-s  00000000 00:04 6717478  /SYSV00000000 (deleted)

b2726000-b2741000  r--s   00000000 08:01 262568   /usr/share/mime/mime.cache

b2741000-b2f9f000   r--p   00000000 08:01 262580   /usr/share/icons/hicolor/icon-theme.cache

b2f9f000-b5f05000   r--p   00000000 08:01 294494   /usr/share/icons/gnome/icon-theme.cache

b5f05000-b6143000  r--p   00000000 08:01 261373   /usr/share/icons/Tango/icon-theme.cache

... 

Process Attributes
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The second column provides the address space 
permissions. The permissions are represented by 
the following letters:

r = read

w = write

x = execute

s = shared

p = private (copy on write)

Process Attributes



 Rossano Pablo Pinto - http://rossano.pro.br

Linux Process States

● R = Running/ Runnable (on run queue)
● S = Sleeping
● Z = Zombie (not reaped by it's parent)
● D = Uninterruptible sleep (usually IO)
● T = Stopped
● t = Tracing stop
● X = dead (never appears or should never be seen)
● W = paging (not valid since 2.6.xx)
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Linux Process States

● Some flags
● < = Higher than normal priority
● N = Lower than normal priority
● L = pages r locked in memory (can't be paged out)
● s = session leader
● l = is multi-threaded (uses CLONE_THREAD flag in 

clone syscal)
● + = is in the foreground process group
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Listing Processes

● Most common commands
● ps - instant system photography
● top - shows system photography every 5 seconds 

(default)
● These programs depend on the proc filesystem 

mounted on /proc
– systemd automatically mounts /proc
– with systemd it's not possible to umount /proc anymore as 

it was with SysV init

– fuser -v -m /proc shows that PID 1 is using /proc (you 
can only umount unused fs and you can't SIGKILL PID 1)
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Listing Processes

● ps examples (several others from 'man ps')
● ps - PID, TTY, TIME, CMD (from that shell only)

● ps aux - USER, PID, %CPU, %MEM, VSZ, RSS, 
TTY, STAT, START, TIME, COMMAND

● ps ax - PID, TTY, STAT, TIME, COMMAND

● ps -ejH - PID, PGID, SID, TIME, CMD

● ps -auroot - PID, TTY, TIME, CMD (all processes 
owned by root)
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Listing Processes

● ps example with customizable fields
● ps -Luroot -o ppid,pid,tid,stat,wchan,cmd

– Shows all processes from User root
– It shows the columns

● Parent Process ID
● Process ID
● Thread ID
● Status
● The name of the event the “S state” is waitng for
● Command line
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Signals (Controlling processes)

● What's out there as a process controlling 
mechanism?
● Signals - it's a special message that is sent to a 

process to sinalize some condition

● kill - command to send a signal to a process

● List available signals: kill -l
● man 7 signal
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Signals (Controlling processes)

● Important ones (bare minimal to master):
● SIGHUP (1) - nowadays, usually used to signal a 

process to reread it's conf file
● SIGINT (2) - Ctrl-C from terminal (terminates the 

process)
● SIGQUIT (3) - similar to SIGTERM but generates a 

core dump (some programs catch this signal and do 
some other thing...)

● SIGKILL (9) - destroy process from the kernel
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Signals (Controlling processes)

● Important ones (bare minimal to master):
● SIGSTOP (19) - gets it off from the run queue
● SIGTSTP(20) - Ctrl-Z/Terminal Stop
● SIGCONT (18) - reenables stopped process
● SIGSEGV (11) - sent by kernel to offending process 
● SIGTERM (15) - similar to kill but gives a chance to 

the process to terminate “nicelly” (for instance to do 
some finishing task and invoke exit syscall)
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Signals (Controlling processes)

● Important ones (bare minimal to master):
● SIGUSR1 (10), SIGUSR2 (12) - They don't have a 

default meaning
– Ex.: Apache uses SIGUSR1 as a request to restart

● Default behavior
● Programmed behavior (trapped/caught signals)
● “Untoucheable” behaviors - Ex.: SIGKILL and 

SIGSTOP
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Signals (Controlling processes)

● Sending a signal to a process
● Most common programs: kill, pkill

● kill sintax

kill SIGNAL PID
● Example:

kill -SIGKILL [SOMEPROCESSID]

kill -9 [SOMEPROCESSID]
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Signals  (Controlling processes)

xcalc &

pgrep xcalc (suppose it returns 5533)

kill -SIGSTOP 5533

ps ax | grep xcalc (observe the T status - 
try to use the calculator)

kill -SIGCONT 5533

ps ax | grep xcalc (observe the S status - 
try to use the calculator)
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Signals  (Controlling processes)

kill -SIGKILL 5533

pgrep xcalc (process has died)
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Signals  (Controlling processes)

● pkill sintax:
● pkill -SIGNAL [ATTRIBUTES]

● Example
● pkill -SIGHUP syslogd

– make syslog rereads its conf file
● pkill -SIGTERM -u albert

– sends a SIGTERM to all albert processes
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Using signals in programs
● Reminder: PID and PPID

00 /* Author: rossano at gmail dot com */
01 #include <stdio.h>
02 #include <unistd.h>
03 
04 int main() {
05   printf("This process PID is %d\n", (int) getpid());
06   printf("This process PPID is %d\n", (int) getppid());
07   return 0; 
08 }
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Using signals in programs
● Reminder: fork, parent/child relation

00 /* Author: rossano at gmail dot com */
01 #include <stdio.h>
02 #include <sys/types.h>
03 #include <unistd.h>
04 
05 int main() {
06   pid_t pid=0;
07   printf("Parent PID is %d\n", (int) getpid());
08 
09   pid = fork();
10   if(pid != 0) {
11     printf("This is the parent process, PID is %d\n", (int) getpid());
12     printf("Child PID is %d\n", (int) pid);
13   } 
14   else printf("This is the child process, PID is %d\n", (int) getpid());
15   return 0; 
16 }
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Using signals in programs
● Send signal to process: kill - man 2 kill

NAME
       kill - send signal to a process

SYNOPSIS
       #include <sys/types.h>
       #include <signal.h>
       int kill(pid_t pid, int sig);

DESCRIPTION
       The kill() system call can be used to send any signal to any process
       group or process.



 Rossano Pablo Pinto - http://rossano.pro.br

Using signals in programs
● Send signal to process: kill example:
//send_signal.c - Author: rossano at gmail dot com
#include <stdio.h> // printf
#include <stdlib.h> // atoi
#include <sys/types.h> // pid_t type definition used in kill syscall
#include <signal.h> // kill

int main(int argc, char **argv) {
  int sig=0, pid=0, ret=0;

  if (argc < 2) {
    printf("Usage: %s SIGNAL_NUMBER PID\n",argv[0]);
    exit(0);
  }
  
  sig=(int)atoi(argv[1]);
  pid=(int)atoi(argv[2]);
  ret=kill(pid, sig);

  return ret;
}
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Using signals in programs
● Send signal to process: kill example: Compile/test

gcc -o send_signal send_signal.c

xterm &

ps ax | grep xterm (returns the PID 23152)

./send_signal 19 23152 (it's the SIGSTOP)

ps ax | grep xterm (state changed to T)

./send_signal 18 23152 (it's the SIGCONT)

ps ax | grep xterm (state changed to S)

./send_signal 9 23152 (xterm is eliminated)
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Using signals in programs
● Control signal behavior: signal - man signal

SYNOPSIS

       #include <signal.h>

       typedef void (*sighandler_t)(int);

       sighandler_t signal(int signum, sighandler_t handler);

DESCRIPTION

       The  behavior  of  signal()  varies across Unix versions, and has also 
varied historically across different versions of Linux.  Avoid its use: use        
sigaction(2) instead.
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Using signals in programs
● Control signal behavior: signal - man signal

SYNOPSIS

       #include <signal.h>

       typedef void (*sighandler_t)(int);

       sighandler_t signal(int signum, sighandler_t handler);

DESCRIPTION

       The  behavior  of  signal()  varies across Unix versions, and has also 
varied historically across different versions of Linux.  Avoid its use: use        
sigaction(2) instead.
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Using signals in programs
● Control signal behavior: signal example (capture 

CTRL-C from terminal):
// conf_signal.c - Author: rossano at gmail dot com
#include <stdio.h>
#include <signal.h>
#include <stdlib.h>
void my_sigint_handler() {
  int c;
  printf("Are you sure you want to terminate program [y/n]?");
  c = getchar();
  if(c == 'y')   exit(0);
}
int main(int argc, char **argv) {
    signal(SIGINT, my_sigint_handler);
  while(1) {}
  return 0;
}
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Using signals in programs
● Control signal behavior: sigaction - man sigaction

NAME
       sigaction - examine and change a signal action

SYNOPSIS
       #include <signal.h>
       int sigaction(int signum, const struct sigaction *act,
                        struct sigaction *oldact);

DESCRIPTION
       The  sigaction()  system  call is used to change the action taken by a
       process on receipt of a specific signal.  (See signal(7) for an overview of
       signals.)



 Rossano Pablo Pinto - http://rossano.pro.br

Using signals in programs
●Control signal behavior: sigaction example: 

/* Author: rossano at gmail dot com */
#include <signal.h>    // sig_atomic_t
#include <string.h>    // memset
#include <stdio.h>     // printf

sig_atomic_t counter = 0;

void my_handler(int signum) {
  ++counter;
  printf("I received signal %d\n",signum);
}

int main() {
  struct sigaction sa;
  memset(&sa, 0, sizeof(sa));
  sa.sa_handler = &my_handler; 
  sigaction(SIGUSR1, &sa, NULL);

  while(counter < 3) {}

  printf("I received %d SIGUSR1 signals. Terminating!!!\n", counter);
  return 0;
}
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Using signals in programs
● Control signal behavior: sigaction example: 

compile/test 

gcc -o sigusr1 sigusr1.c

./sigusr1
● From another terminal:

pgrep sigusr1 (returns 23880)

kill -SIGUSR1 23880

kill -SIGUSR1 23880

kill -SIGUSR1 23880
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Using signals in programs
● For every kill -SIGUSR1 23880 from the other 

terminal, the program sigusr1 prints:

“ I received signal 10”

● The last kill -SIGUSR1 23880 makes sigusr1 
print:

“ I received signal 10”

“ I received 3 SIGUSR1 signals. Terminating!!!”
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Threads

● Linux creates SCHEDULING ENTITIES with the 
system call CLONE or FORK
● FORK - used by glibc < 2.3.3 (uses wrapper fork())
● CLONE - used by glibc >= 2.3.3 (still uses wrapper fork())
● CLONE can be used to create PROCESSES and 

THREADS
● CLONE offers several flags
● Depending on the flags, the created entity is called a 

PROCESS or a THREAD
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Threads

● Syscall clone with flags SIGCHLD is equivalent 
to a syscall fork.
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Threads: CLONE flags for 
PROCESSES

● CLONE_PARENT_SETTID

● CLONE_CHILD_CLEAR_TID

● SIGCHILD
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Threads: CLONE flags for 
THREADS < kernel 2.6

● CLONE_VM

● CLONE_FS

● CLONE_FILES

● CLONE_SIGHAND
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Threads: CLONE flags for 
THREADS >= kernel 2.6

● CLONE_VM

● CLONE_FS

● CLONE_FILES

● CLONE_SIGHAND

● CLONE_THREAD

● CLONE_SYSVSEM

● CLONE_SETTLS

● CLONE_PARENT_SETTID

● CLONE_CHILD_CLEAR_TID
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Threads: Libraries

● POSIX.1 Specification
● Thread Libraries for Linux

● LinuxThreads
● NPTL (Native POSIX Threads Library)

● Both libraries are a 1:1 implementation (each thread 
maps to a kernel scheduling entity)

● Both libraries uses CLONE in a way that a SIGKILL (and 
other signals when each thread has the same signal 
handlers) affects all the process threads (AS IT SHOULD 
BE)
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Threads: LinuxThreads

● Original Pthreads Linux implementation
● Some compliance with POSIX
● No longer supported since glibc 2.4
● Each process (when multithreaded) is composed of: 

main thread, “manager” thread, other threads
● Signals may be sent only to specific threads

● getpid() returns a DIFFERENT PID for each thread
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Threads: NPTL

● A little bit more compliant with POSIX
● Available since glibc 2.3.2
● Depends on kernel 2.6+
● Each process (when multithreaded) is composed of: main 

thread, other threads
● Signals may be sent to

– specific threads (tgkill system call)
– process (kill system call)

● getpid() returns THE SAME PID for each thread

● Creation time is 4 times as fast as LinuxThreads
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Tests
//Author : rossano at gmail dot com

#include <pthread.h>

#include <stdio.h>

#include <unistd.h>

void *func1(void *uu) {

  while(1) {printf("func1 - %i\n",getpid());}

  return NULL;

}

void *func2(void *uu) {

  while(1) {printf("func2 - %i\n",getpid());}

  return NULL;

}

void *func3(void *uu) {

  while(1) {printf("func3 - %i\n",getpid());}

  return NULL;

}

int main() {

  pthread_t t1, t2, t3;

  pthread_create(&t1, NULL, &func1, &"x");

  pthread_create(&t2, NULL, &func2, &"x");

  pthread_create(&t3, NULL, &func3, &"x");

  while(1) {printf("Main - %i\n",getpid());}

  return 0;

}
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Tests

● gcc threads.c -o threads -pthread
● Terminal 1

– ./threads
● Terminal 2

– watch -n 1 ps -Luze o ppid,pid,tid,user,stat,command
– Obs.: uze means User ze
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Tests: Slackware 11 - LinuxThreads

●The program creates 3 threads. The total thread count
should be 4: Main thread + 3 threads! But it shows 5 
threads !!!

●PID 2062   is the MAIN THREAD
● PID 2063 is the MANAGER  THREAD
● 2064, 2065, 2066 are managed threads
● Observe PPIDs !
● What occurs if MANAGER THREAD is killed ?
 (kill -9 2063)
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Tests: Slackware 11 - LinuxThreads

●USING ANOTHER RUN of threads program:
●Main Thread: 4036
●Manager Thread: 4037
●kill -9 4037
●Manager thread becames a ZOMBIE
●All other threads are adopted by PID 1 (except the main thread)
●What occurs if I kill any other thread? (kill -9 4040)
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Tests: Slackware 11 - LinuxThreads

● What occurs if I kill any other thread? (kill -9 4040)
● Only it dies, as shown.... (thread with PID 4040 is not present 
 anymore...)
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Tests: Slackware 11 - LinuxThreads

● What occurs if any other thread, other than the 
manager thread, is killed?

– All other threads associatted with the manager thread is 
killed, including the main thread.

● See manager thread code next slide!
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Tests: Slackware 11 - LinuxThreads
....

while(1) {

    n = __poll(&ufd, 1, 2000);

    /* Check for termination of the main thread */

    if (getppid() == 1) {

      pthread_kill_all_threads(SIGKILL, 0);

      _exit(0);

    }

    /* Check for dead children */

    if (terminated_children) {

      terminated_children = 0;

      pthread_reap_children();

    }

    /* Read and execute request */

    if (n == 1 && (ufd.revents & POLLIN)) {

      n = TEMP_FAILURE_RETRY(__libc_read(reqfd, (char 
*)&request,

 sizeof(request)));

...

● Check the bold red 
code!

– It shows that if the 
manager thread is 
adopted by PID 1, then 
main thread is dead, 
so kill all other threads. 

– Something similar 
occurs if any other 
managed thread is 
killed.
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Tests: slackware 14.2 - NPTL

●There is no manager thread
●If ANY thread is killed with the “kill” syscall, then 
ANY other thread is killed. That's what expected for
a POSIX Thread.



 Rossano Pablo Pinto - http://rossano.pro.br

That's all
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Priorities (under construction!!!!!!!!!)

● It's all about priorities!!!
● It's possible to set soft priorities to Linux 

processes (we do not touch REAL-TIME 
priorities here)

● UNDER CONSTRUCTION
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A lot of stuff

● Credentials: man 7 credentials
● Process Group, Process Group Leader, Process 

Session, Process Session Leader

● man 3 exit
● What happens when a process terminates?
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