
Container's
Anatomy

Namespaces, cgroups,
and some filesystem magic

1 / 59

Who am I?
Jérôme Petazzoni (@jpetazzo)

French software engineer living in California

I have built and scaled the dotCloud PaaS
(almost 5 years ago, time flies!)

I talk (too much) about containers
(first time was maybe in February 2013, at SCALE in L.A.)

Proud member of the House of Bash
(when annoyed, we replace things with tiny shell scripts)

2 / 59

https://twitter.com/jpetazzo

Outline
What is a container?
(high level and low level overviews)

The building blocks
(namespaces, cgroups, copy-on-write storage)

Container runtimes
(Docker, LXC, rkt, runC, systemd-nspawn...)

Other containers
(OpenVZ, Jails, Zones...)

Hand-crafted, artisan-pick, house-blend containers
(with demos!)

3 / 59

What is a
container?

4 / 59

High level approach:
it's a lightweight VM

I can get a shell on it
(through SSH or otherwise)

It "feels" like a VM:

own process space
own network interface
can run stuff as root
can install packages
can run services
can mess up routing, iptables ...

5 / 59

Low level approach:
it's chroot on steroids

It's not quite like a VM:

uses the host kernel
can't boot a different OS
can't have its own modules
doesn't need init as PID 1
doesn't need syslogd, cron...

It's just a bunch of processes visible on the host machine
(contrast with VMs which are opaque)

6 / 59

How are they implemented?
Let's look in the kernel source!

Go to LXR

Look for "LXC" → zero result

Look for "container" → 1000+ results

Almost all of them are about data structures
(or other unrelated concepts like "ACPI containers")

There are some references to "our" containers,
in documentation

7 / 59

http://lxr.free-electrons.com/

How are they implemented?
Let's look in the kernel source!

Go to LXR

Look for "LXC" → zero result

Look for "container" → 1000+ results

Almost all of them are about data structures
(or other unrelated concepts like "ACPI containers")

There are some references to "our" containers,
in documentation

??? Are containers even in the kernel ???

8 / 59

http://lxr.free-electrons.com/

Ancient archeology
Five years ago...

When using the LXC tools (lxc-start, lxc-stop ...)
you would often get weird messages mentioning
/cgroup/container_name/...

The cgroup pseudo filesystem has counters for CPU, RAM,
I/O, and device access (/dev/*) but nothing about network

I didn't find about "namespaces" by myself
(maybe noticing /proc/$PID/ns would have helped;
more on that later)

9 / 59

Modern archeology
Nowadays:

Cgroups are often in /sys/fs/cgroup

You quickly stumble on nsenter
(which tips you off about namespaces)

There is significantly more documentation everywhere

10 / 59

The building
blocks

11 / 59

Control groups

12 / 59

Control groups
Resource metering and limiting

memory

CPU

block I/O

network*

Device node (/dev/*) access control

*With cooperation from iptables/tc; more on that later

13 / 59

Generalities
Each subsystem (memory, CPU...) has a hierarchy (tree)

Hierarchies are independent
(the trees for e.g. memory and CPU can be different)

Each process belongs to exactly 1 node in each hierarchy
(think of each hierarchy as a different dimension or axis)

Each hierarchy starts with 1 node (the root)

All processes initially belong to the root of each hierarchy*

Each node = group of processes
(sharing the same resources)

*It's a bit more subtle; more on that later

14 / 59

Example

cpu memory/
├── batch ├── 109
│ ├── bitcoins ├── 25
│ │ └── 52 ├── 26
│ └── hadoop ├── 27
│ ├── 109 ├── 52
│ └── 88 ├── 88
└── realtime └── databases
 ├── nginx ├── 1008
 │ ├── 25 └── 524
 │ ├── 26
 │ └── 27
 ├── postgres
 │ └── 524
 └── redis
 └── 1008

15 / 59

Memory cgroup: accounting
Keeps track of pages used by each group:

file (read/write/mmap from block devices)
anonymous (stack, heap, anonymous mmap)
active (recently accessed)
inactive (candidate for eviction)

Each page is "charged" to a group

Pages can be shared across multiple groups
(e.g. multiple processes reading from the same files)

When pages are shared, the groups "split the bill"

16 / 59

Memory cgroup: limits
Each group can have (optional) hard and soft limits

Soft limits are not enforced
(they influence reclaim under memory pressure)

Hard limits will trigger a per-group OOM killer

The OOM killer can be customized (oom-notifier);
when the hard limit is exceeded:

freeze all processes in the group
notify user space (instead of going rampage)
we can kill processes, raise limits, migrate containers ...
when we're in the clear again, unfreeze the group

Limits can be set for physical, kernel, total memory

17 / 59

Memory cgroup: tricky details
Each time the kernel gives a page to a process,
or takes it away, it updates the counters

This adds some overhead

Unfortunately, this cannot be enabled/disabled per process
(it has to be done at boot time)

Cost sharing means thata process leaving a group
(e.g. because it terminates) can theoretically cause
an out of memory condition

18 / 59

Cpu cgroup
Keeps track of user/system CPU time

Keeps track of usage per CPU

Allows to set weights

Can't set CPU limits

OK, let's say you give N%
then the CPU throttles to a lower clock speed
now what?
same if you give a time slot
instructions? their exec speed varies wildly
¯_ツ_/¯

19 / 59

Cpuset cgroup
Pin groups to specific CPU(s)

Reserve CPUs for specific apps

Avoid processes bouncing between CPUs

Also relevant for NUMA systems

Provides extra dials and knobs
(per zone memory pressure, process migration costs...)

20 / 59

Blkio cgroup
Keeps track of I/Os for each group

per block device
read vs write
sync vs async

Set throttle (limits) for each group

per block device
read vs write
ops vs bytes

Set relative weights for each group

Full disclosure: this used to be clunky for async operations, and I haven't tested it in ages. ☹

21 / 59

Net_cls and net_prio cgroup
Automatically set traffic class or priority,
for traffic generated by processes in the group

Only works for egress traffic

Net_cls will assign traffic to a class
(that has to be matched with tc/iptables,
otherwise traffic just flows normally)

Net_prio will assign traffic to a priority
(priorities are used by queuing disciplines)

22 / 59

Devices cgroup
Controls what the group can do on device nodes

Permissions include read/write/mknod

Typical use:

allow /dev/{tty,zero,random,null} ...
deny everything else

A few interesting nodes:

/dev/net/tun (network interface manipulation)
/dev/fuse (filesystems in user space)
/dev/kvm (VMs in containers, yay inception!)
/dev/dri (GPU)

23 / 59

Subtleties
PID 1 is placed at the root of each hierarchy

When a process is created, it is placed in the same groups
as its parent

Groups are materialized by one (or multiple) pseudo-fs
(typically mounted in /sys/fs/cgroup)

Groups are created by mkdir in the pseudo-fs

To move a process:

echo $PID > /sys/fs/cgroup/.../tasks

The cgroup wars: systemd vs cgmanager vs ...

24 / 59

Namespaces

25 / 59

Namespaces
Provide processes with their own view of the system

Cgroups = limits how much you can use;
namespaces = limits what you can see (and therefore use)

Multiple namespaces:

pid
net
mnt
uts
ipc
user

Each process is in one namespace of each type

26 / 59

Pid namespace
Processes within a PID namespace only see processes in
the same PID namespace

Each PID namespace has its own numbering
(starting at 1)

When PID 1 goes away, the whole namespace is killed

Those namespaces can be nested

A process ends up having multiple PIDs
(one per namespace in which its nested)

27 / 59

Net namespace: in theory
Processes within a given network namespace
get their own private network stack, including:

network interfaces (including lo)

routing tables

iptables rules

sockets (ss, netstat)

You can move a network interface from a netns to another

ip link set dev eth0 netns PID

28 / 59

Net namespace: in practice
Typical use-case:

use veth pairs
(two virtual interfaces acting as a cross-over cable)

eth0 in container network namespace

paired with vethXXX in host network namespace

all the vethXXX are bridged together
(Docker calls the bridge docker0)

But also: the magic of --net container

shared localhost (and more!)

29 / 59

Mnt namespace
Processes can have their own root fs (à la chroot)

Processes can also have "private" mounts

/tmp (scoped per user, per service...)

Masking of /proc, /sys

NFS auto-mounts (why not?)

Mounts can be totally private, or shared

No easy way to pass along a mount
from a namespace to another ☹

30 / 59

Uts namespace
gethostname / sethostname

'nuff said!

31 / 59

Ipc namespace

32 / 59

Ipc namespace
Does anybody knows about IPC?

33 / 59

Ipc namespace
Does anybody knows about IPC?

Does anybody cares about IPC?

34 / 59

Ipc namespace
Does anybody knows about IPC?

Does anybody cares about IPC?

Allows a process (or group of processes) to have own:

IPC semaphores
IPC message queues
IPC shared memory

... without risk of conflict with other instances.

35 / 59

User namespace
Allows to map UID/GID; e.g.:

UID 0→1999 in container C1 is mapped to
UID 10000→11999 on host
UID 0→1999 in container C2 is mapped to
UID 12000→13999 on host
etc.

Avoids extra configuration in containers

UID 0 (root) can be squashed to a non-privileged user

Security improvement

But: devil is in the details

36 / 59

Namespace manipulation
Namespaces are created with the clone() system call
(i.e. with extra flags when creating a new process)

Namespaces are materialized by pseudo-files in
/proc/<pid>/ns

When the last process of a namespace exits, it is destroyed
(but can be preserved by bind-mounting the pseudo-file)

It is possible to "enter" a namespace with setns()
(exposed by the nsenter wrapper in util-linux)

37 / 59

Copy-on-write

38 / 59

Copy-on-write storage
Create a new container instantly
(instead of copying its whole filesystem)

Storage keeps track of what has changed

Many options available

AUFS, overlay (file level)
device mapper thinp (block level)
BTRFS, ZFS (FS level)

Considerably reduces footprint and "boot" times

See also: Deep dive into Docker storage drivers

39 / 59

http://jpetazzo.github.io/assets/2015-07-01-deep-dive-into-docker-storage-drivers.html

Other details

40 / 59

Orthogonality
All those things can be used independently

Use a few cgroups if you just need resource isolation

Simulate a network of routers with network namespaces

Put the debugger in a container's namespaces,
but not its cgroups (to not use its resource quotas)

Setup a network interface in an isolated environment,
then move it to another

etc.

41 / 59

One word about overhead
Even when you don't run containers ...
... you are in a container

Your host processes still execute in the root
namespaces and cgroups

Remember: there are three kind of lies

42 / 59

One word about overhead
Even when you don't run containers ...
... you are in a container

Your host processes still execute in the root
namespaces and cgroups

Remember: there are three kind of lies

Lies, damn lies, and benchmarks

43 / 59

Some missing bits
Capabilities

break down "root / non-root" into fine-grained rights

allow to keep root, but without the dangerous bits

however: CAP_SYS_ADMIN remains a big catchall

SELinux / AppArmor ...

containers that actually contain

deserve a whole talk on their own

44 / 59

Container
runtimes

45 / 59

LXC
Set of userland tools

A container is a directory in /var/lib/lxc

Small config file + root filesystem

Early versions had no support for CoW

Early versions had no support to move images around

Requires significant amount of elbow grease
(easy for sysadmins/ops, hard for devs)

46 / 59

systemd-nspawn
From its manpage:

"For debugging, testing and building"

"Similar to chroot, but more powerful"

"Implements the Container Interface"

Seems to position itself as plumbing

47 / 59

systemd-nspawn
From its manpage:

"For debugging, testing and building"

"Similar to chroot, but more powerful"

"Implements the Container Interface"

Seems to position itself as plumbing

Recently added support for ɹǝʞɔop images

48 / 59

http://cgit.freedesktop.org/systemd/systemd/commit/?id=72648326ea6d3e68cdb0b5890df737047d031a41

systemd-nspawn
From its manpage:

"For debugging, testing and building"

"Similar to chroot, but more powerful"

"Implements the Container Interface"

Seems to position itself as plumbing

Recently added support for ɹǝʞɔop images

#define INDEX_HOST "index.do" /* the URL we get the data from */ "cker.io"
#define HEADER_TOKEN "X-Do" /* the HTTP header for the auth token */ "cker-Token:"
#define HEADER_REGISTRY "X-Do" /*the HTTP header for the registry */ "cker-Endpoints:"

49 / 59

http://cgit.freedesktop.org/systemd/systemd/commit/?id=72648326ea6d3e68cdb0b5890df737047d031a41

Docker Engine
Daemon controlled by REST(ish) API

First versions shelled out to LXC,
now uses its own libcontainer runtime

Manages containers, images, builds, and more

Some people think it does too many things

50 / 59

rkt, runC
Back to the basics!

Focus on container execution
(no API, no image management, no build, etc.)

They implement different specifications:

rkt implements appc (App Container)

runC implements OCP (Open Container Project),
leverages Docker's libcontainer

51 / 59

Which one is best?
They all use the same kernel features

Performance will be exactly the same

Look at:

features

design

ecosystem

52 / 59

Other containers

53 / 59

OpenVZ
Also Linux

Older, but battle-tested
(e.g. Travis CI gives you root in OpenVZ)

Tons of neat features too

ploop (efficient block device for containers)

checkpoint/restore, live migration

venet (~more efficient veth)

Still developed

54 / 59

Jails / Zones
FreeBSD / Solaris

Coarser granularity than namespaces and cgroups

Strong emphasis on security

Great for hosting providers

Not so much for developers
(where's the equivalent of docker run -ti ubuntu?)

Note: Solaris branded zones can run Linux binaries

55 / 59

Build your own

56 / 59

FOR EDUCATIONAL
PURPOSES ONLY

57 / 59

58 / 59

Thanks!
Questions?

@jpetazzo
@docker

59 / 59

https://twitter.com/docker
https://twitter.com/jpetazzo

