Container's
Anatomy

Namespaces, cgroups,
and some filesystem magic

1/59

Who am I?

e Jérome Petazzoni (@jpetazzo)
e French software engineer living in California

e [have built and scaled the dotCloud PaaS
(almost 5 years ago, time flies!)

e | talk (too much) about containers
(first time was maybe in February 2013, at SCALE in L.A.)

e Proud member of the House of Bash
(when annoyed, we replace things with tiny shell scripts)

2 /59

https://twitter.com/jpetazzo

Outline

e Whatis a container?
(high level and low level overviews)

e The building blocks
(namespaces, cgroups, COpy-on-write storage)

e Container runtimes
(Docker, LXC, rkt, runC, systemd-nspawn...)

e Other containers
(OpenVzZ, Jails, Zones...)

e Hand-crafted, artisan-pick, house-blend containers
(with demos!)

3/59

What is 3
container?

4 /59

High level approach:
it's a lightweight VM

e [can geta shell onit
(through SSH or otherwise)

o [t "feels" like a VM:

Own process space
own network interface

can run stuff as root

can install packages

can run services

can mess up routing, iptables ...

O O O O O o

5/59

Low level approach:
it's chroot on steroids

e It's not quite like a VM:

o uses the host kernel

o can't boot a different OS

o can't have its own modules
o doesn't need initas PID 1

o doesn't need syslogd, cron...

e [t'sjust a bunch of processes visible on the host machine
(contrast with VMs which are opaque)

6/59

How are they implemented?
Let's look in the Rernel source!

e Goto LXR
e Look for "LXC" - zero result
e [.ook for "container" — 1000+ results

e Almost all of them are about data structures
(or other unrelated concepts like "ACPI containers")

e There are some references to "our" containers,
In documentation

7/59

http://lxr.free-electrons.com/

How are they implemented?
Let's look in the Rernel source!

e Goto LXR
e Look for "LXC" - zero result
e [.ook for "container" — 1000+ results

e Almost all of them are about data structures
(or other unrelated concepts like "ACPI containers")

e There are some references to "our" containers,
In documentation

e ?77? Are containers even in the kernel ???

8/59

http://lxr.free-electrons.com/

Ancient archeology

Five years ago...

e When using the LXC tools (lxc-start, Ixc-stop ...)
you would often get weird messages mentioning
/cgroup/container_name/...

e The cgroup pseudo filesystem has counters for CPU, RAM,
I/0, and device access (/dev/*) but nothing about network

e [didn't find about "namespaces" by myself

(maybe noticing /proc/$PID/ns would have helped;
more on that later)

9/59

Modern archeology

Nowadays:
e Cgroups are oftenin /sys/fs/cgroup

e You quickly stumble on nsenter
(which tips you off about namespaces)

e There is significantly more documentation everywhere

10/59

The building
blocks

Control groups

12 /59

Control groups

e Resource metering and limiting
o memory

o CPU

@)

block I/O
o network™*

e Device node (/dev/*) access control

*With cooperation from iptables/tc; more on that later

13/59

Generalities

e Each subsystem (memory, CPU...) has a hierarchy (tree)

e Hierarchies are independent
(the trees for e.g. memory and CPU can be different)

e Each process belongs to exactly 1 node in each hierarchy
(think of each hierarchy as a different dimension or axis)

e Each hierarchy starts with 1 node (the root)
e All processes initially belong to the root of each hierarchy*

e Each node = group of processes
(sharing the same resources)

*It's a bit more subtle; more on that later

14 /59

Example

cpu memory/
—— batch —— 109
—— bitcoins —— 25
L 5 26
—— hadoop — 27
— 109 — 52
—— 88 —— 88
—— realtime L databases
—— nginx t 1008
— 25 524
— 26
— 27
postgres
—— 524
—— redis
L 1008

15/59

Memory cgroup: accounting

e Keeps track of pages used by each group:

o file (read/write/mmap from block devices)

o anonymous (stack, heap, anonymous mmap)
o active (recently accessed)

o inactive (candidate for eviction)

e Each page is "charged" to a group

e Pages can be shared across multiple groups
(e.g. multiple processes reading from the same files)

e When pages are shared, the groups "split the bill"

16 /59

Memory cgroup: limits

e Each group can have (optional) hard and soft limits

e Soft limits are not enforced
(they influence reclaim under memory pressure)

e Hard limits will trigger a per-group OOM Kkiller

e The OOM killer can be customized (oom-notifier);
when the hard limit is exceeded:

o freeze all processes in the group

o notify user space (instead of going rampage)

o we can Kkill processes, raise limits, migrate containers ...
o when we're in the clear again, unfreeze the group

e Limits can be set for physical, kernel, total memory

17 /59

Memory cgroup: tricky details

e Each time the kernel gives a page to a process,
or takes it away, it updates the counters

e This adds some overhead

e Unfortunately, this cannot be enabled/disabled per process
(it has to be done at boot time)

e Costsharing means thata process leaving a group
(e.g. because it terminates) can theoretically cause
an out of memory condition

18 /59

Cpu cgroup

e Keeps track of user/system CPU time
e Keeps track of usage per CPU

e Allows to set weights

e Can't set CPU limits

OK, let's say you give N%

then the CPU throttles to a lower clock speed
now what?

same if you give a time slot

instructions? their exec speed varies wildly

v/

O O O O O O

19/59

Cpuset cgroup

e Pin groups to specific CPU(s)

e Reserve CPUs for specific apps

e Avoid processes bouncing between CPUs
e Also relevant for NUMA systems

e Provides extra dials and knobs
(per zone memory pressure, process migration costs...)

20/ 59

BIRio cgroup

e Keeps track of I/Os for each group

o per block device
o read vs write
O Sync vs async

e Set throttle (limits) for each group

o per block device
o read vs write
o ops vs bytes

e Setrelative weights for each group

Full disclosure: this used to be clunky for async operations, and I haven't tested it in ages. ®

21/59

Net_cls and net_prio cgroup

e Automatically set traffic class or priority,
for traffic generated by processes in the group

e Only works for egress traffic

e Net_cls will assign traffic to a class
(that has to be matched with tc/iptables,
otherwise traffic just flows normally)

e Net_prio will assign traffic to a priority
(priorities are used by queuing disciplines)

2259

Devices cgroup

e Controls what the group can do on device nodes
e Permissions include read/write/mknod
e Typical use:

o allow /dev/{tty,zero,random,null} ...
o deny everything else

e A few interesting nodes:

o /dev/net/tun (network interface manipulation)
o [dev/fuse (filesystems in user space)

o [dev/kvm (VMs in containers, yay inception!)

o [/dev/dri (GPU)

23 /59

Subtleties

e PID 1is placed at the root of each hierarchy

e When a process is created, it is placed in the same groups
as its parent

e Groups are materialized by one (or multiple) pseudo-fs
(typically mounted in /sys/fs/cgroup)

e Groups are created by mkdir in the pseudo-fs

e To move a process:
echo $PID > /sys/fs/cgroup/.../tasks

e The cgroup wars: systemd vs cgmanager vs ...

24 [59

Namespaces

25/59

Namespaces

e Provide processes with their own view of the system

e Cgroups = limits how much you can use;
namespaces = limits what you can see (and therefore use)

e Multiple namespaces:

pid
net
mnt
uts
ipc
user

O O O O O o

e Each processis in one namespace of each type

26 /59

Pid namespace

e Processes within a PID namespace only see processes in
the same PID namespace

e Each PID namespace has its own numbering
(starting at 1)

e When PID 1 goes away, the whole namespace is killed
e Those namespaces can be nested

e A process ends up having multiple PIDs
(one per namespace in which its nested)

27 /59

Net namespace: in theory

e Processes within a given network namespace
get their own private network stack, including:

o network interfaces (including o)
o routing tables

o iptables rules

o sockets (ss, netstat)

e You can move a network interface from a netns to another

ip link set dev eth® netns PID

28 /59

Net namespace: in practice

e Typical use-case:

o use veth pairs
(two virtual interfaces acting as a cross-over cable)

o eth@ in container network namespace
o paired with vethxXX in host network namespace

o all the vethxXx are bridged together
(Docker calls the bridge dockero)

e But also: the magic of --net container

o shared localhost (and more!)

29 /59

Mnt namespace

e Processes can have their own root fs (a la chroot)
e Processes can also have "private” mounts

o /tmp (scoped per user, per service...)

o Masking of /proc, /sys

o NFS auto-mounts (why not?)
e Mounts can be totally private, or shared

e No easy way to pass along a mount
from a namespace to another @

30/59

Uts namespace

e gethostname / sethostname

e muff said!

31/59

Ipc namespace

32 /59

Ipc namespace

e Does anybody knows about IPC?

33 /59

Ipc namespace

e Does anybody knows about IPC?

e Does anybody cares about IPC?

34 /59

Ipc namespace

e Does anybody knows about IPC?
e Does anybody cares about IPC?
e Allows a process (or group of processes) to have own:

o IPC semaphores
o IPC message queues
o [PC shared memory

... without risk of conflict with other instances.

35/59

User namespace

e Allows to map UID/GID; e.g.:

o UID 0—-1999 in container C1 is mapped to
UID 10000-11999 on host

o UID 0-1999 in container C2 is mapped to
UID 12000—-13999 on host

o etc.

e Avoids extra configuration in containers
e UID 0 (root) can be squashed to a non-privileged user

e Security improvement

But: devil is in the details

36 /59

Namespace manipulation

e Namespaces are created with the clone() system call
(i.e. with extra flags when creating a new process)

e Namespaces are materialized by pseudo-files in
/proc/<pid>/ns

e When the last process of a namespace exits, it is destroyed
(but can be preserved by bind-mounting the pseudo-file)

e [tis possible to "enter" a namespace with setns()
(exposed by the nsenter wrapper in util-1linux)

37/59

Copy-on-write

38 /59

Copy-on-write storage

e Create a new container instantly
(instead of copying its whole filesystem)

e Storage keeps track of what has changed
e Many options available

o AUFS, overlay (file level)
o device mapper thinp (block level)
o BTRES, ZFS (FS level)

e Considerably reduces footprint and "boot" times

See also: Deep dive into Docker storage drivers

39/59

http://jpetazzo.github.io/assets/2015-07-01-deep-dive-into-docker-storage-drivers.html

Other detalls

40 /59

Orthogonality

e All those things can be used independently
e Use a few cgroups if you just need resource isolation
e Simulate a network of routers with network namespaces

e Put the debugger in a container's namespaces,
but not its cgroups (to not use its resource quotas)

e Setup a network interface in an isolated environment,
then move it to another

o efc.

41 /59

One word about overhead

e Even when you don't run containers ...
... you are in a container

e Your host processes still execute in the root
namespaces and cgroups

e Remember: there are three kind of lies

42 /59

One word about overhead

e Even when you don't run containers ...
... you are in a container

e Your host processes still execute in the root
namespaces and cgroups

e Remember: there are three kind of lies

e Lies, damn lies, and benchmarks

43 /59

Some missing bits

e Capabilities
o break down "root/ non-root" into fine-grained rights
o allow to keep root, but without the dangerous bits
o however: CAP_SYS_ADMIN remains a big catchall
e SELinux/AppArmor ...
o containers that actually contain

o deserve a whole talk on their own

44 [59

Container
runtimes

45 /59

LX(

e Set of userland tools

e A container is a directory in /var/1lib/1xc

e Small config file + root filesystem

e Early versions had no support for CoW

e Early versions had no support to move images around

e Requires significant amount of elbow grease
(easy for sysadmins/ops, hard for devs)

46 / 59

systemd-nspawn

From its manpage:
e "For debugging, testing and building"
e "Similar to chroot, but more powerful"
e "Implements the Container Interface"

e Seems to position itself as plumbing

47 [59

systemd-nspawn

From its manpage:

"For debugging, testing and building"
"Similar to chroot, but more powerful"
"Implements the Container Interface"
Seems to position itself as plumbing

Recently added support for Jo>20p images

48 [59

http://cgit.freedesktop.org/systemd/systemd/commit/?id=72648326ea6d3e68cdb0b5890df737047d031a41

systemd-nspawn

From its manpage:
e "For debugging, testing and building"
e "Similar to chroot, but more powerful"
e "Implements the Container Interface"
e Seems to position itself as plumbing

e Recently added support for ua320p images

#define INDEX_HOST "index.do" /* the URL we get the data from */ "cker.io"
#define HEADER_TOKEN "X-Do" /* the HTTP header for the auth token */ "cker-Token:"
#define HEADER_REGISTRY "X-Do" /*the HTTP header for the registry */ "cker-Endpoints:"

49 /59

http://cgit.freedesktop.org/systemd/systemd/commit/?id=72648326ea6d3e68cdb0b5890df737047d031a41

Docker Engine

e Daemon controlled by REST(ish) API

e First versions shelled out to LXC,
Nnow uses its own libcontainer runtime

e Manages containers, images, builds, and more

e Some people think it does too many things

50/59

rkt, run(

e Back to the basics!

e Focus on container execution
(no API, no image management, no build, etc.)

e They implement different specifications:
o rktimplements appc (App Container)

o runC implements OCP (Open Container Project),
leverages Docker's libcontainer

51/59

Which one is best?

e They all use the same kernel features
e Performance will be exactly the same
e Lookat:

o features

o design

o ecosystem

52 /59

Other containers

53/59

OpenVZ

e Also Linux

e QOlder, but battle-tested
(e.g. Travis CI gives you root in OpenVZ)

e Tons of neat features too
o ploop (efficient block device for containers)
o checkpoint/restore, live migration
o venet (~more efficient veth)

e Still developed

54 /59

Jails / Zones

e FreeBSD /Solaris

e Coarser granularity than namespaces and cgroups
e Strong emphasis on security

e Great for hosting providers

e Not so much for developers
(where's the equivalent of docker run -ti ubuntu?)

Note: Solaris branded zones can run Linux binaries

55/59

Build your own

56 /59

FOR EDUCATIONAL
PURPOSES ONLY

57/59

root@dockerhost : # []

Thanks!
Questions?

@jpetazzo
@docRer

59/59

https://twitter.com/docker
https://twitter.com/jpetazzo

