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94 CHAPTER 2 / OPERATING SYSTEM OVERVIEW

of the System V kernel and produced a clean, if complex, implementation. New fea-
tures in the release include real-time processing support, process scheduling classes,
dynamically allocated data structures, virtual memory management, virtual file sys-
tem, and a preemptive kernel.

SVR4 draws on the efforts of both commercial and academic designers and
was developed to provide a uniform platform for commercial UNIX deployment. It
has succeeded in this objective and is perhaps the most important UNIX variant. It
incorporates most of the important features ever developed on any UNIX system
and does so in an integrated, commercially viable fashion. SVR4 runs on processors
ranging from 32-bit microprocessors up to supercomputers.

BSD

The Berkeley Software Distribution (BSD) series of UNIX releases have played a
key role in the development of OS design theory. 4.xBSD is widely used in academic
installations and has served as the basis of a number of commercial UNIX products.
It is probably safe to say that BSD is responsible for much of the popularity of
UNIX and that most enhancements to UNIX first appeared in BSD versions.

4.4BSD was the final version of BSD to be released by Berkeley, with the de-
sign and implementation organization subsequently dissolved. It is a major upgrade
to 4.3BSD and includes a new virtual memory system, changes in the kernel struc-
ture, and a long list of other feature enhancements.

One of the most widely used and best documented versions of BSD is
FreeBSD. FreeBSD is popular for Internet-based servers and firewalls and is used in
a number of embedded systems.

The latest version of the Macintosh operating system, Mac OS X, is based on
FreeBSD 5.0 and the Mach 3.0 microkernel.

Solaris 10

Solaris is Sun’s SVR4-based UNIX release, with the latest version being 10. Solaris
provides all of the features of SVR4 plus a number of more advanced features, such
as a fully preemptable, multithreaded kernel, full support for SMP, and an object-
oriented interface to file systems. Solaris is the most widely used and most success-
ful commercial UNIX implementation.

2.8 LINUX

History

Linux started out as a UNIX variant for the IBM PC (Intel 80386) architecture.
Linus Torvalds, a Finnish student of computer science, wrote the initial version. Tor-
valds posted an early version of Linux on the Internet in 1991. Since then, a number
of people, collaborating over the Internet, have contributed to the development of
Linux, all under the control of Torvalds. Because Linux is free and the source code is
available, it became an early alternative to other UNIX workstations, such as those
offered by Sun Microsystems and IBM.Today, Linux is a full-featured UNIX system
that runs on all of these platforms and more, including Intel Pentium and Itanium,
and the Motorola/IBM PowerPC.
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Modular core kernel, with explicit publishing of
data structures and interfaces by components
Three layers:
• Hardware Abstraction Layer manages

processor, interrupt, DMA, BIOS details
• Kernel Layer manages CPU scheduling,

interrupts, and synchronization
• Executive Layer implements the major OS

functions in a fully threaded, mostly
preemptive environment

Dynamic data structures and kernel address
space organization; initialization code dis-
carded after boot. Much kernel code and
data is pageable. Non-pageable kernel code
and data uses large pages for TLB efficiency

Monolithic kernel

Kernel code and data is statically allocated
to non-pageable memory

System structure
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WINDOWS/LINUX COMPARISON
Windows Vista Linux

General

A commercial OS, with strong influences from
VAX/VMS and requirements for compatibility
with multiple OS personalities, such as DOS/
Windows, POSIX, and, originally, OS/2

An open-source implementation of UNIX,
focused on simplicity and efficiency. Runs on a
very large range of processor architectures

Environment which influenced fundamental design decisions

32-bit program address space
Mbytes of physical memory
Virtual memory
Multiprocessor (4-way)
Micro-controller based I/O devices
Client/Server distributed computing
Large, diverse user populations

16-bit program address space
Kbytes of physical memory
Swapping system with memory mapping
Uniprocessor
State-machine based I/O devices
Standalone interactive systems
Small number of friendly users

Compare these with today’s environment:
64-bit addresses
Gbytes of physical memory
Virtual memory, Virtual Processors
Multiprocessor (64-128)
High-speed internet/intranet, Web Services
Single user, but vulnerable to hackers worldwide

Although both Windows and Linux have adapted to changes in the environment, the original design
environments (i.e. in 1989 and 1973) heavily influenced the design choices:

Unit of concurrency: threads vs. processes [address space, uniprocessor]
Process creation: CreateProcess() vs. fork() [address space, swapping]
I/O: Async vs sync [swapping, I/O devices]
Security: Discretionary Access vs. uid/gid [user populations]
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96 CHAPTER 2 / OPERATING SYSTEM OVERVIEW

Key to the success of Linux has been the availability of free software packages
under the auspices of the Free Software Foundation (FSF). FSF’s goal is stable, plat-
form-independent software that is free, high quality, and embraced by the user com-
munity. FSF’s GNU project2 provides tools for software developers, and the GNU
Public License (GPL) is the FSF seal of approval. Torvalds used GNU tools in de-
veloping his kernel, which he then released under the GPL. Thus, the Linux distrib-
utions that you see today are the product of FSF’s GNU project, Torvald’s
individual effort, and many collaborators all over the world.

In addition to its use by many individual programmers, Linux has now made
significant penetration into the corporate world. This is not only because of the free
software, but also because of the quality of the Linux kernel. Many talented pro-
grammers have contributed to the current version, resulting in a technically impres-
sive product. Moreover, Linux is highly modular and easily configured.This makes it
easy to squeeze optimal performance from a variety of hardware platforms. Plus,
with the source code available, vendors can tweak applications and utilities to meet
specific requirements. Throughout this book, we will provide details of Linux kernel
internals based on the most recent version, Linux 2.6.

Modular Structure

Most UNIX kernels are monolithic. Recall from earlier in this chapter that a monolithic
kernel is one that includes virtually all of the OS functionality in one large block of code

File systems, networking, devices are loadable/
unloadable drivers (dynamic link libraries)
using the extensible I/O system interfaces

Dynamically loaded drivers can provide both
pageable and non-pageable sections

Namespace root is virtual with file systems
mounted underneath; types of system objects
easily extended, and leverage unified nam-
ing, referencing, lifetime management, secu-
rity, and handle-based synchronization

OS personalities implemented as user-mode
subsystems. Native NT APIs are based on
the general kernel handle/object architec-
ture and allow cross-process manipulation of
virtual memory, threads, and other kernel
objects

Discretionary Access Controls, discrete
privileges, auditing

Extensive support for loading/unloading
kernel modules, such as device drivers and
file systems.

Modules cannot be paged, but can be
unloaded

Namespace is rooted in a file system; adding
new named system objects require file system
changes or mapping onto device model

Implements a POSIX-compatible, UNIX-
like interface; Kernel API is far simpler than
Windows; Can understand various types of
executables

User/group IDs; capabilities similar to NT priv-
ileges can also be associated with processes

2GNU is a recursive acronym for GNU’s Not Unix. The GNU project is a free software set of packages
and tools for developing a UNIX-like operating system; it is often used with the Linux kernel.
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that runs as a single process with a single address space. All the functional components
of the kernel have access to all of its internal data structures and routines. If changes are
made to any portion of a typical monolithic OS, all the modules and routines must be re-
linked and reinstalled and the system rebooted before the changes can take effect.As a
result, any modification, such as adding a new device driver or file system function, is dif-
ficult. This problem is especially acute for Linux, for which development is global and
done by a loosely associated group of independent programmers.

Although Linux does not use a microkernel approach, it achieves many of the
potential advantages of this approach by means of its particular modular architecture.
Linux is structured as a collection of modules, a number of which can be automatically
loaded and unloaded on demand.These relatively independent blocks are referred to
as loadable modules[GOYE99]. In essence, a module is an object file whose code can
be linked to and unlinked from the kernel at runtime.Typically, a module implements
some specific function, such as a filesystem, a device driver, or some other feature of
the kernel’s upper layer. A module does not execute as its own process or thread, al-
though it can create kernel threads for various purposes as necessary. Rather, a mod-
ule is executed in kernel mode on behalf of the current process.

Thus, although Linux may be considered monolithic, its modular structure
overcomes some of the difficulties in developing and evolving the kernel.

The Linux loadable modules have two important characteristics:

• Dynamic linking: A kernel module can be loaded and linked into the kernel
while the kernel is already in memory and executing.A module can also be un-
linked and removed from memory at any time.

• Stackable modules: The modules are arranged in a hierarchy. Individual mod-
ules serve as libraries when they are referenced by client modules higher up in
the hierarchy, and as clients when they reference modules further down.

Dynamic linking [FRAN97] facilitates configuration and saves kernel mem-
ory. In Linux, a user program or user can explicitly load and unload kernel modules
using the insmod and rmmod commands. The kernel itself monitors the need for
particular functions and can load and unload modules as needed. With stackable
modules, dependencies between modules can be defined. This has two benefits:

1. Code common to a set of similar modules (e.g., drivers for similar hardware)
can be moved into a single module, reducing replication.

2. The kernel can make sure that needed modules are present, refraining from
unloading a module on which other running modules depend, and loading any
additional required modules when a new module is loaded.

Figure 2.17 is an example that illustrates the structures used by Linux to man-
age modules. The figure shows the list of kernel modules after only two modules
have been loaded: FAT and VFAT. Each module is defined by two tables, the mod-
ule table and the symbol table. The module table includes the following elements:

• *next: Pointer to the following module. All modules are organized into a
linked list. The list begins with a pseudomodule (not shown in Figure 2.17).

• *name: Pointer to module name.
• size: Module size in memory pages.
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98 CHAPTER 2 / OPERATING SYSTEM OVERVIEW

• usecount: Module usage counter. The counter is incremented when an opera-
tion involving the module’s functions is started and decremented when the op-
eration terminates.

• flags: Module flags.
• nsyms: Number of exported symbols.
• ndeps: Number of referenced modules
• *syms: Pointer to this module’s symbol table.
• *deps: Pointer to list of modules the are referenced by this module.
• *refs: Pointer to list of modules that use this module.

The symbol table defines those symbols controlled by this module that are
used elsewhere.

Figure 2.17 shows that the VFAT module was loaded after the FAT module
and that the VFAT module is dependent on the FAT module.

Kernel Components

Figure 2.18, taken from [MOSB02] shows the main components of the Linux kernel
as implemented on an IA-64 architecture (e.g., Intel Itanium).The figure shows sev-
eral processes running on top of the kernel. Each box indicates a separate process,
while each squiggly line with an arrowhead represents a thread of execution.3 The

3In Linux, there is no distinction between the concepts of processes and threads. However, multiple
threads in Linux can be grouped together in such a way that, effectively, you can have a single process
comprising multiple threads. These matters are discussed in Chapter 4.

FAT
*syms

*deps

*refs

ndeps

nysms

flags

usecount

size

*name

*next

value

*name

value

symbol_table

*name

value

*name

value

*name

value

*name

value

*name

VFAT

Module

symbol_table

*syms

*deps

*refs

ndeps

nysms

flags

usecount

size

*name

*next

Module

Figure 2.17 Example List of Linux Kernel Modules
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kernel itself consists of an interacting collection of components, with arrows indicat-
ing the main interactions. The underlying hardware is also depicted as a set of com-
ponents with arrows indicating which kernel components use or control which
hardware components. All of the kernel components, of course, execute on the
processor but, for simplicity, these relationships are not shown.

Briefly, the principal kernel components are the following:

• Signals: The kernel uses signals to call into a process. For example, signals are
used to notify a process of certain faults, such as division by zero. Table 2.6
gives a few examples of signals.

Table 2.6 Some Linux Signals

SIGHUP Terminal hangup SIGCONT Continue
SIGQUIT Keyboard quit SIGTSTP Keyboard stop

SIGTRAP Trace trap SIGTTOU Terminal write

SIGBUS Bus error SIGXCPU CPU limit exceeded

SIGKILL Kill signal SIGVTALRM Virtual alarm clock

SIGSEGV Segmentation violation SIGWINCH Window size unchanged

SIGPIPT Broken pipe SIGPWR Power failure

SIGTERM Termination SIGRTMIN First real-time signal

SIGCHLD Child status unchanged SIGRTMAX Last real-time signal

Signals System calls

Processes
& scheduler

Virtual
memory

Physical
memory

System
memory

Processes

H
ar

dw
ar

e
U

se
r l

ev
el

K
er

ne
l

CPU Terminal Disk

Traps &
faults

Char Device
drivers

Block device
drivers

Network  
device drivers

File
systems

Network
protocols

Interrupts

Network interface
controller

Figure 2.18 Linux Kernel Components
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Table 2.7 Some Linux System Calls

Filesystem related

close Close a file descriptor.

link Make a new name for a file.

open Open and possibly create a file or device.

read Read from file descriptor.

write Write to file descriptor

Process related

execve Execute program.

exit Terminate the calling process.

getpid Get process identification.

setuid Set user identity of the current process.

prtrace Provides a means by which a parent process my observe and control the execu-
tion of another process, and examine and change its core image and registers.

Scheduling related

sched_getparam Sets the scheduling parameters associated with the scheduling policy for the
process identified by pid.

sched_get_priority_max Returns the maximum priority value that can be used with the scheduling algo-
rithm identified by policy.

sched_setscheduler Sets both the scheduling policy (e.g., FIFO) and the associated parameters
for the process pid.

sched_rr_get_interval Writes into the timespec structure pointed to by the parameter tp the round
robin time quantum for the process pid.

sched_yield A process can relinquish the processor voluntarily without blocking via this sys-
tem call. The process will then be moved to the end of the queue for its static
priority and a new process gets to run.

Interprocess Communication (IPC) related

msgrcv A message buffer structure is allocated to receive a message. The system call
then reads a message from the message queue specified by msqid into the newly
created message buffer.

semctl Performs the control operation specified by cmd on the semaphore set semid.

semop Performs operations on selected members of the semaphore set semid.

shmat Attaches the shared memory segment identified by shmid to the data segment
of the calling process.

shmctl Allows the user to receive information on a shared memory segment, set the owner,
group, and permissions of a shared memory segment, or destroy a segment.

• System calls: The system call is the means by which a process requests a specific
kernel service. There are several hundred system calls, which can be roughly
grouped into six categories: filesystem, process, scheduling, interprocess com-
munication, socket (networking), and miscellaneous.Table 2.7 defines a few ex-
amples in each category.
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Socket (Networking) related

bind Assigns the local IP address and port for a socket. Returns 0 for success and –1
for error.

connect Establishes a connection between the given socket and the remote socket asso-
ciated with sockaddr.

gethostname Returns local host name.

send Send the bytes contained in buffer pointed to by *msg over the given socket.

setsockopt Sets the options on a socket

Miscellaneous

create_module Attempts to create a loadable module entry and reserve the kernel memory
that will be needed to hold the module.

fsync Copies all in-core parts of a file to disk, and waits until the device reports that
all parts are on stable storage.

query_module Requests information related to loadable modules from the kernel.

time Returns the time in seconds since January 1, 1970.

vhangup Simulates a hangup on the current terminal. This call arranges for other users to
have a “clean” tty at login time.

Table 2.7 (Continued)

• Processes and scheduler: Creates, manages, and schedules processes.
• Virtual memory: Allocates and manages virtual memory for processes.
• File systems: Provides a global, hierarchical namespace for files, directories,

and other file related objects and provides file system functions.
• Network protocols: Supports the Sockets interface to users for the TCP/IP

protocol suite.
• Character device drivers: Manages devices that require the kernel to send or

receive data one byte at a time, such as terminals, modems, and printers.
• Block device drivers: Manages devices that read and write data in blocks, such

as various forms of secondary memory (magnetic disks, CD-ROMs, etc.).
• Network device drivers: Manages network interface cards and communica-

tions ports that connect to network devices, such as bridges and routers.
• Traps and faults: Handles traps and faults generated by the processor, such as

a memory fault.
• Physical memory: Manages the pool of page frames in real memory and allo-

cates pages for virtual memory.
• Interrupts: Handles interrupts from peripheral devices.

2.9 RECOMMENDED READING AND WEB SITES

[BRIN01] is an excellent collection of papers covering major advances in OS design
over the years. [SWAI07] is a provocative and interesting short article on the future
of operating systems.
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3. Interrupt threads are assigned higher priorities than all other types of kernel
threads.

When an interrupt occurs, it is delivered to a particular processor and the
thread that was executing on that processor is pinned.A pinned thread cannot move
to another processor and its context is preserved; it is simply suspended until the in-
terrupt is processed. The processor then begins executing an interrupt thread. There
is a pool of deactivated interrupt threads available, so that a new thread creation is
not required. The interrupt thread then executes to handle the interrupt. If the han-
dler routine needs access to a data structure that is currently locked in some fashion
for use by another executing thread, the interrupt thread must wait for access to that
data structure. An interrupt thread can only be preempted by another interrupt
thread of higher priority.

Experience with Solaris interrupt threads indicates that this approach pro-
vides superior performance to the traditional interrupt-handling strategy [KLEI95].

4.6 LINUX PROCESS AND THREAD MANAGEMENT

Linux Tasks

A process, or task, in Linux is represented by a task_struct data structure. The
task_struct data structure contains information in a number of categories:

• State: The execution state of the process (executing, ready, suspended,
stopped, zombie). This is described subsequently.

WINDOWS/LINUX COMPARISON
Windows Linux

Processes are containers for the user-mode address
space, a general handle mechanism for referencing
kernel objects, and threads; Threads run in a process,
and are the schedulable entities

Processes are both containers and the schedulable
entities; processes can share address space and sys-
tem resources, making processes effectively usable as
threads

Processes are created by discrete steps which con-
struct the container for a new program and the first
thread; a fork() like native API exists, but only used
for POSIX compatibility

Processes created by making virtual copies with
fork() and then over-writing with exec() to run a new
program

Process handle table used to uniformly reference
kernel objects (representing processes, threads,
memory sections, synchronization, I/O devices, dri-
vers, open files, network connections, timers, kernel
transactions, etc)

Kernel objects referenced by ad hoc collection of
APIs, and mechanisms – including file descriptors for
open files and sockets and PIDs for processes and
process groups

Up to 16 million handles on kernel objects are sup-
ported per process

Up to 64 open files/sockets are supported per
process

Kernel is fully multi-threaded, with kernel preemp-
tion enabled on all systems in the original design

Few kernel processes used, and kernel preemption is
a recent feature

Many system services implemented using a
client/server computing, including the OS personality
subsystems that run in user-mode and communicate
using remote-procedure calls

Most services are implemented in the kernel, with the
exception of many networking functions
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• Scheduling information: Information needed by Linux to schedule processes.
A process can be normal or real time and has a priority. Real-time processes
are scheduled before normal processes, and within each category, relative pri-
orities can be used. A counter keeps track of the amount of time a process is
allowed to execute.

• Identifiers: Each process has a unique process identifier and also has user and
group identifiers.A group identifier is used to assign resource access privileges
to a group of processes.

• Interprocess communication: Linux supports the IPC mechanisms found in
UNIX SVR4, described in Chapter 6.

• Links: Each process includes a link to its parent process, links to its siblings
(processes with the same parent), and links to all of its children.

• Times and timers: Includes process creation time and the amount of processor
time so far consumed by the process. A process may also have associated one
or more interval timers. A process defines an interval timer by means of a sys-
tem call; as a result a signal is sent to the process when the timer expires. A
timer may be single use or periodic.

• File system: Includes pointers to any files opened by this process, as well as
pointers to the current and the root directories for this process.

• Address space: Defines the virtual address space assigned to this process.
• Processor-specific context: The registers and stack information that constitute

the context of this process.

Figure 4.18 shows the execution states of a process. These are as follows:

• Running: This state value corresponds to two states. A Running process is
either executing or it is ready to execute.

• Interruptible: This is a blocked state, in which the process is waiting for an
event, such as the end of an I/O operation, the availability of a resource, or a
signal from another process.

• Uninterruptible: This is another blocked state. The difference between this
and the Interruptible state is that in an uninterruptible state, a process is wait-
ing directly on hardware conditions and therefore will not handle any signals.

• Stopped: The process has been halted and can only resume by positive action
from another process. For example, a process that is being debugged can be
put into the Stopped state.

• Zombie: The process has been terminated but, for some reason, still must have
its task structure in the process table.

Linux Threads

Traditional UNIX systems support a single thread of execution per process, while
modern UNIX systems typically provide support for multiple kernel-level threads
per process. As with traditional UNIX systems, older versions of the Linux kernel
offered no support for multithreading. Instead, applications would need to be
written with a set of user-level library functions, the most popular of which is
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11POSIX (Portable Operating Systems based on UNIX) is an IEEE API standard that includes a stan-
dard for a thread API. Libraries implementing the POSIX Threads standard are often named Pthreads.
Pthreads are most commonly used on UNIX-like POSIX systems such as Linux and Solaris, but
Microsoft Windows implementations also exist.

known as pthread (POSIX thread) libraries, with all of the threads mapping into a
single kernel-level process.11 We have seen that modern versions of UNIX offer
kernel-level threads. Linux provides a unique solution in that it does not recognize
a distinction between threads and processes. Using a mechanism similar to the
lightweight processes of Solaris, user-level threads are mapped into kernel-level
processes. Multiple user-level threads that constitute a single user-level process
are mapped into Linux kernel-level processes that share the same group ID. This
enables these processes to share resources such as files and memory and to avoid
the need for a context switch when the scheduler switches among processes in the
same group.

A new process is created in Linux by copying the attributes of the current
process. A new process can be cloned so that it shares resources, such as files, signal
handlers, and virtual memory. When the two processes share the same virtual mem-
ory, they function as threads within a single process. However, no separate type of
data structure is defined for a thread. In place of the usual fork() command, processes
are created in Linux using the clone() command. This command includes a set of
flags as arguments, defined in Table 4.5. The traditional fork() system call is imple-
mented by Linux as a clone() system call with all of the clone flags cleared.

Figure 4.18 Linux Process/Thread Model
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Scheduling
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Signal
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Stopped
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When the Linux kernel performs a switch from one process to another, it
checks whether the address of the page directory of the current process is the same
as that of the to-be-scheduled process. If they are, then they are sharing the same ad-
dress space, so that a context switch is basically just a jump from one location of
code to another location of code.

Although cloned processes that are part of the same process group can share
the same memory space, they cannot share the same user stacks. Thus the clone()
call creates separate stack spaces for each process.

4.7 SUMMARY

Some operating systems distinguish the concepts of process and thread, the for-
mer related to resource ownership and the latter related to program execution.
This approach may lead to improved efficiency and coding convenience. In a mul-
tithreaded system, multiple concurrent threads may be defined within a single
process. This may be done using either user-level threads or kernel-level threads.
User-level threads are unknown to the OS and are created and managed by a
threads library that runs in the user space of a process. User-level threads are
very efficient because a mode switch is not required to switch from one thread to
another. However, only a single user-level thread within a process can execute at
a time, and if one thread blocks, the entire process is blocked. Kernel-level

Table 4.5 Linux clone () flags

CLONE_CLEARID Clear the task ID.

CLONE_DETACHED The parent does not want a SIGCHLD signal sent on exit.

CLONE_FILES Shares the table that identifies the open files.

CLONE_FS Shares the table that identifies the root directory and the current working directory, as
well as the value of the bit mask used to mask the initial file permissions of a new file.

CLONE_IDLETASK Set PID to zero, which refers to an idle task. The idle task is employed when all
available tasks are blocked waiting for resources.

CLONE_NEWNS Create a new namespace for the child.

CLONE_PARENT Caller and new task share the same parent process.

CLONE_PTRACE If the parent process is being traced, the child process will also be traced.

CLONE_SETTID Write the TID back to user space.

CLONE_SETTLS Create a new TLS for the child.

CLONE_SIGHAND Shares the table that identifies the signal handlers.

CLONE_SYSVSEM Shares System V SEM_UNDO semantics.

CLONE_THREAD Inserts this process into the same thread group of the parent. If this flag is true, it
implicitly enforces CLONE_PARENT.

CLONE_VFORK If set, the parent does not get scheduled for execution until the child invokes the
execve() system call.

CLONE_VM Shares the address space (memory descriptor and all page tables):
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6.8 LINUX KERNEL CONCURRENCY MECHANISMS

Linux includes all of the concurrency mechanisms found in other UNIX systems,
such as SVR4, including pipes, messages, shared memory, and signals. In addition,
Linux 2.6 includes a rich set of concurrency mechanisms specifically intended for
use when a thread is executing in kernel mode. That is, these are mechanisms used
within the kernel to provide concurrency in the execution of kernel code. This sec-
tion examines the Linux kernel concurrency mechanisms.

Atomic Operations

Linux provides a set of operations that guarantee atomic operations on a variable.
These operations can be used to avoid simple race conditions. An atomic operation
executes without interruption and without interference. On a uniprocessor system, a
thread performing an atomic operation cannot be interrupted once the operation
has started until the operation is finished. In addition, on a multiprocessor system,
the variable being operated on is locked from access by other threads until this op-
eration is completed.

Two types of atomic operations are defined in Linux: integer operations, which
operate on an integer variable, and bitmap operations, which operate on one bit in a
bitmap (Table 6.3). These operations must be implemented on any architecture that
implements Linux. For some architectures, there are corresponding assembly lan-
guage instructions for the atomic operations. On other architectures, an operation
that locks the memory bus is used to guarantee that the operation is atomic.

For atomic integer operations, a special data type is used,atomic_t.The atomic
integer operations can be used only on this data type, and no other operations are al-
lowed on this data type. [LOVE04] lists the following advantages for these restrictions:

1. The atomic operations are never used on variables that might in some circum-
stances be unprotected from race conditions.

2. Variables of this data type are protected from improper use by nonatomic operations.
3. The compiler cannot erroneously optimize access to the value (e.g., by using an

alias rather than the correct memory address).
4. This data type serves to hide architecture-specific differences in its imple-

mentation.

A typical use of the atomic integer data type is to implement counters.
The atomic bitmap operations operate on one of a sequence of bits at an arbi-

trary memory location indicated by a pointer variable. Thus, there is no equivalent
to the atomic_t data type needed for atomic integer operations.

Atomic operations are the simplest of the approaches to kernel synchroniza-
tion. More complex locking mechanisms can be built on top of them.

Spinlocks

The most common technique used for protecting a critical section in Linux is the spin-
lock. Only one thread at a time can acquire a spinlock.Any other thread attempting to
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Table 6.3 Linux Atomic Operations

Atomic Integer Operations

ATOMIC_INIT (int i) At declaration: initialize an atomic_t to i

int atomic_read(atomic_t *v) Read integer value of v

void atomic_set(atomic_t*v, int i) Set the value of v to integer i

void atomic_add(int i, atomic_t *v) Add i to v

void atomic_sub(int i,atomic_t *v) Subtract i from v

void atomic_inc(atomic_t *v) Add 1 to v

void atomic_dec(atomic_t *v) Subtract 1 from v

int atomic_sub_and_test(int i, Subtract i from v; return 1 if the result is 
atomic_t *v) zero; return 0 otherwise

int atomic_add_negative(int i, Add i to v; return 1 if the result is nega-
atomic_t *v) tive; return 0 otherwise (used for imple-

menting semaphores)

int atomic_dec_and_test(atomic_t *v) Subtract 1 from v; return 1 if the result is 
zero; return 0 otherwise

int atomic_inc_and_test(atomic_t *v) Add 1 to v; return 1 if the result is zero;
return 0 otherwise

Atomic Bitmap Operations

void set_bit(int nr, void *addr) Set bit nr in the bitmap pointed to by addr

void clear_bit(int nr, void *addr) Clear bit nr in the bitmap pointed to by addr

void change_bit(int nr, void *addr) Invert bit nr in the bitmap pointed to by addr

int test_and_set_bit(int nr,  Set bit nr in the bitmap pointed to by 
void *addr) addr; return the old bit value

int test_and_clear_bit(int nr,  Clear bit nr in the bitmap pointed to by 
void *addr) addr; return the old bit value

int test_and_change_bit(int nr, Invert bit nr in the bitmap pointed to by 
void *addr) addr; return the old bit value

int test_bit(int nr, void *addr) Return the value of bit nr in the bitmap 
pointed to by addr

acquire the same lock will keep trying (spinning) until it can acquire the lock. In
essence a spinlock is built on an integer location in memory that is checked by each
thread before it enters its critical section. If the value is 0, the thread sets the value to
1 and enters its critical section. If the value is nonzero, the thread continually checks
the value until it is zero. The spinlock is easy to implement but has the disadvantage
that locked-out threads continue to execute in a busy-waiting mode. Thus spinlocks
are most effective in situations where the wait time for acquiring a lock is expected to
be very short, say on the order of less than two context changes.

The basic form of use of a spinlock is the following:

spin_lock(&lock)
/* critical section */
spin_unlock(&lock)
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Basic Spinlocks The basic spinlock (as opposed to the reader-writer spinlock
explained subsequently) comes in four flavors (Table 6.4):

• Plain: If the critical section of code is not executed by interrupt handlers or if
the interrupts are disabled during the execution of the critical section, then the
plain spinlock can be used. It does not affect the interrupt state on the proces-
sor on which it is run.

• _irq: If interrupts are always enabled, then this spinlock should be used.
• _irqsave: If it is not known if interrupts will be enabled or disabled at the time

of execution, then this version should be used. When a lock is acquired, the
current state of interrupts on the local processor is saved, to be restored when
the lock is released.

• _bh: When an interrupt occurs, the minimum amount of work necessary is per-
formed by the corresponding interrupt handler. A piece of code, called the
bottom half, performs the remainder of the interrupt-related work, allowing
the current interrupt to be enabled as soon as possible. The _bh spinlock is
used to disable and then enable bottom halves to avoid conflict with the pro-
tected critical section.

The plain spinlock is used if the programmer knows that the protected data is
not accessed by an interrupt handler or bottom half. Otherwise, the appropriate
nonplain spinlock is used.

Table 6.4 Linux Spinlocks

void spin_lock(spinlock_t *lock) Acquires the specified lock, spinning if needed until it is 
available

void spin_lock_irq(spinlock_t Like spin_lock, but also disables interrupts on the local 
*lock) processor

void spin_lock_irqsave(spinlock_t Like spin_lock_irq, but also saves the current interrupt 
*lock, unsigned long flags) state in flags

void spin_lock_bh(spinlock_t Like spin_lock, but also disables the execution of all 
*lock) bottom halves

void spin_unlock(spinlock_t *lock) Releases given lock

void spin_unlock_irq(spinlock_t Releases given lock and enables local interrupts
*lock)

void spin_unlock_irqrestore Releases given lock and restores local interrupts 
(spinlock_t to given previous state
*lock, unsigned long flags)

void spin_unlock_bh(spinlock_t Releases given lock and enables bottom halves
*lock)

void spin_lock_init(spinlock_t Initializes given spinlock
*lock)

int spin_trylock(spinlock_t Tries to acquire specified lock; returns nonzero if lock is 
*lock) currently held and zero otherwise

int spin_is_locked(spinlock_t *lock) Returns nonzero if lock is currently held and zero 
otherwise
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Spinlocks are implemented differently on a uniprocessor system versus a mul-
tiprocessor system. For a uniprocessor system, the following considerations apply. If
kernel preemption is turned off, so that a thread executing in kernel mode cannot be
interrupted, then the locks are deleted at compile time; they are not needed. If ker-
nel preemption is enabled, which does permit interrupts, then the spinlocks again
compile away (that is, no test of a spinlock memory location occurs) but are simply
implemented as code that enables/disables interrupts. On a multiple processor sys-
tem, the spinlock is compiled into code that does in fact test the spinlock location.
The use of the spinlock mechanism in a program allows it to be independent of
whether it is executed on a uniprocessor or multiprocessor system.

Reader-Writer Spinlock The reader-writer spinlock is a mechanism that al-
lows a greater degree of concurrency within the kernel than the basic spinlock.
The reader-writer spinlock allows multiple threads to have simultaneous access
to the same data structure for reading only but gives exclusive access to the spin-
lock for a thread that intends to update the data structure. Each reader-writer
spinlock consists of a 24-bit reader counter and an unlock flag, with the following
interpretation:
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Counter Flag Interpretation

0 1 The spinlock is released and available for use

0 0 Spinlock has been acquired for writing by one thread 

n (n > 0) 0 Spinlock has been acquired for reading by n threads

n (n > 0) 1 Not valid

As with the basic spinlock, there are plain, _irq, and _irqsave versions of
the reader-writer spinlock.

Note that the reader-writer spinlock favors readers over writers. If the spin-
lock is held for readers, then so long as there is at least one reader, the spinlock can-
not be preempted by a writer. Furthermore, new readers may be added to the
spinlock even while a writer is waiting.

Semaphores

At the user level, Linux provides a semaphore interface corresponding to that in
UNIX SVR4. Internally, Linux provides an implementation of semaphores for its
own use.That is, code that is part of the kernel can invoke kernel semaphores.These
kernel semaphores cannot be accessed directly by the user program via system calls.
They are implemented as functions within the kernel and are thus more efficient
than user-visible semaphores.

Linux provides three types of semaphore facilities in the kernel: binary sema-
phores, counting semaphores, and reader-writer semaphores.

Binary and Counting Semaphores The binary and counting semaphores
defined in Linux 2.6 (Table 6.5) have the same functionality as described for such
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semaphores in Chapter 5. The function names down and up are used for the func-
tions referred to in Chapter 5 as semWait and semSignal, respectively.

A counting semaphore is initialized using the sema_init function, which gives
the semaphore a name and assigns an initial value to the semaphore. Binary sema-
phores, called MUTEXes in Linux, are initialized using the init_MUTEX and init_
MUTEX_LOCKED functions, which initialize the semaphore to 1 or 0, respectively.

Linux provides three versions of the down (semWait) operation.

1. The down function corresponds to the traditional semWait operation. That is,
the thread tests the semaphore and blocks if the semaphore is not available.
The thread will awaken when a corresponding up operation on this semaphore
occurs. Note that this function name is used for an operation on either a count-
ing semaphore or a binary semaphore.

2. The down_interruptiblefunction allows the thread to receive and respond
to a kernel signal while being blocked on the down operation. If the thread is
woken up by a signal, the down_interruptible function increments the

Table 6.5 Linux Semaphores

Traditional Semaphores

void sema_init(struct semaphore *sem, Initializes the dynamically created semaphore to the 
int count) given count

void init_MUTEX(struct semaphore Initializes the dynamically created semaphore with a 
*sem) count of 1 (initially unlocked)

void init_MUTEX_LOCKED(struct Initializes the dynamically created semaphore with a 
semaphore *sem) count of 0 (initially locked)

void down(struct semaphore *sem) Attempts to acquire the given semaphore, entering 
uninterruptible sleep if semaphore is unavailable

int down_interruptible(struct Attempts to acquire the given semaphore, entering 
semaphore *sem) interruptible sleep if semaphore is unavailable; returns 

-EINTR value if a signal other than the result of an up
operation is received.

int down_trylock(struct semaphore Attempts to acquire the given semaphore, and returns 
*sem) a nonzero value if semaphore is unavailable

void up(struct semaphore *sem) Releases the given semaphore

Reader-Writer Semaphores

void init_rwsem(struct rw_semaphore, Initalizes the dynamically created semaphore with a 
*rwsem) count of 1

void down_read(struct rw_semaphore, Down operation for readers
*rwsem)

void up_read(struct rw_semaphore, Up operation for readers
*rwsem)

void down_write(struct rw_semaphore, Down operation for writers
*rwsem)

void up_write(struct rw_semaphore, Up operation for writers
*rwsem)
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count value of the semaphore and returns an error code known in Linux as -
EINTR. This alerts the thread that the invoked semaphore function has aborted.
In effect, the thread has been forced to “give up” the semaphore. This feature is
useful for device drivers and other services in which it is convenient to override a
semaphore operation.

3. The down_trylock function makes it possible to try to acquire a semaphore
without being blocked. If the semaphore is available, it is acquired. Otherwise,
this function returns a nonzero value without blocking the thread.

Reader-Writer Semaphores The reader-writer semaphore divides users into
readers and writers; it allows multiple concurrent readers (with no writers) but only a
single writer (with no concurrent readers). In effect, the semaphore functions as a
counting semaphore for readers but a binary semaphore (MUTEX) for writers. Table
6.5 shows the basic reader-writer semaphore operations.The reader-writer semaphore
uses uninterruptible sleep, so there is only one version of each of the down operations.

Barriers

In some architectures, compilers and/or the processor hardware may reorder memory
accesses in source code to optimize performance. These reorderings are done to opti-
mize the use of the instruction pipeline in the processor.The reordering algorithms con-
tain checks to ensure that data dependencies are not violated. For example, the code:

a = 1;
b = 1;

may be reordered so that memory location b is updated before memory location a is
updated. However, the code

a = 1;
b = a;

will not be reordered. Even so, there are occasions when it is important that reads or
writes are executed in the order specified because of use of the information that is
made by another thread or a hardware device.

To enforce the order in which instructions are executed, Linux provides the
memory barrier facility. Table 6.6 lists the most important functions that are defined

Table 6.6 Linux Memory Barrier Operations

rmb() Prevents loads from being reordered across the barrier

wmb() Prevents stores from being reordered across the barrier

mb() Prevents loads and stores from being reordered across the barrier

barrier() Prevents the compiler from reordering loads or stores across the barrier

smp_rmb() On SMP, provides a rmb( ) and on UP provides a barrier( )

smp_wmb() On SMP, provides a wmb( ) and on UP provides a barrier( )

smp_mb() On SMP, provides a mb( ) and on UP provides a barrier( )

SMP = symmetric multiprocessor
UP = uniprocessor
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for this facility. The rmb() operation insures that no reads occur across the barrier
defined by the place of the rmb() in the code. Similarly, the wmb() operation in-
sures that no writes occur across the barrier defined by the place of the wmb() in
the code. The mb() operation provides both a load and store barrier.

Two important points to note about the barrier operations:

1. The barriers relate to machine instructions, namely loads and stores. Thus the
higher-level language instruction a = b involves both a load (read) from lo-
cation b and a store (write) to location a.

2. The rmb, wmb, and mb operations dictate the behavior of both the compiler
and the processor. In the case of the compiler, the barrier operation dictates
that the compiler not reorder instructions during the compile process. In the
case of the processor, the barrier operation dictates that any instructions pend-
ing in the pipeline before the barrier must be committed for execution before
any instructions encountered after the barrier.

The barrier() operation is a lighter-weight version of the mb() operation,
in that it only controls the compiler’s behavior. This would be useful if it is known
that the processor will not perform undesirable reorderings. For example, the Intel
x86 processors do not reorder writes.

The smp_rmb, smp_wmb, and smp_mb operations provide an optimization for
code that may be compiled on either a uniprocessor (UP) or a symmetric multi-
processor (SMP).These instructions are defined as the usual memory barriers for an
SMP, but for a UP, they are all treated only as compiler barriers. The smp_ opera-
tions are useful in situations in which the data dependencies of concern will only
arise in an SMP context.

6.9 SOLARIS THREAD SYNCHRONIZATION PRIMITIVES

In addition to the concurrency mechanisms of UNIX SVR4, Solaris supports four
thread synchronization primitives:

• Mutual exclusion (mutex) locks
• Semaphores
• Multiple readers, single writer (readers/writer) locks
• Condition variables

Solaris implements these primitives within the kernel for kernel threads; they
are also provided in the threads library for user-level threads. Figure 6.15 shows the
data structures for these primitives.The initialization functions for the primitives fill
in some of the data members. Once a synchronization object is created, there are es-
sentially only two operations that can be performed: enter (acquire lock) and re-
lease (unlock). There are no mechanisms in the kernel or the threads library to
enforce mutual exclusion or to prevent deadlock. If a thread attempts to access a
piece of data or code that is supposed to be protected but does not use the appro-
priate synchronization primitive, then such access occurs. If a thread locks an object
and then fails to unlock it, no kernel action is taken.
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The following relationship holds:

Ni ! Ai " Gi " Li

In general, the lazy buddy system tries to maintain a pool of locally free blocks
and only invokes coalescing if the number of locally free blocks exceeds a threshold.
If there are too many locally free blocks, then there is a chance that there will be a
lack of free blocks at the next level to satisfy demand. Most of the time, when a
block is freed, coalescing does not occur, so there is minimal bookkeeping and oper-
ational costs. When a block is to be allocated, no distinction is made between locally
and globally free blocks; again, this minimizes bookkeeping.

The criterion used for coalescing is that the number of locally free blocks of a
given size should not exceed the number of allocated blocks of that size (i.e., we
must have Li # Ai). This is a reasonable guideline for restricting the growth of
locally free blocks, and experiments in [BARK89] confirm that this scheme results
in noticeable savings.

To implement the scheme, the authors define a delay variable as follows:

Di ! Ai $ Li ! Ni $ 2Li $ Gi

Figure 8.24 shows the algorithm.

8.4 LINUX MEMORY MANAGEMENT

Linux shares many of the characteristics of the memory management schemes of
other UNIX implementations but has its own unique features. Overall, the Linux
memory-management scheme is quite complex [DUBE98]. In this section, we give a
brief overview of the two main aspects of Linux memory management: process
virtual memory, and kernel memory allocation.

Linux Virtual Memory

Virtual Memory Addressing Linux makes use of a three-level page table
structure, consisting of the following types of tables (each individual table is the size
of one page):

• Page directory: An active process has a single page directory that is the size of
one page. Each entry in the page directory points to one page of the page mid-
dle directory.The page directory must be in main memory for an active process.

• Page middle directory: The page middle directory may span multiple pages.
Each entry in the page middle directory points to one page in the page table.

• Page table: The page table may also span multiple pages. Each page table
entry refers to one virtual page of the process.

To use this three-level page table structure, a virtual address in Linux is viewed
as consisting of four fields (Figure 8.25). The leftmost (most significant) field is used
as an index into the page directory. The next field serves as an index into the page
middle directory. The third field serves as an index into the page table. The fourth
field gives the offset within the selected page of memory.

M08_STAL6329_06_SE_C08.QXD  2/21/08  9:31 PM  Page 389



390 CHAPTER 8 / VIRTUAL MEMORY

The Linux page table structure is platform independent and was designed to
accommodate the 64-bit Alpha processor, which provides hardware support for three
levels of paging. With 64-bit addresses, the use of only two levels of pages on the
Alpha would result in very large page tables and directories. The 32-bit Pentium/x86
architecture has a two-level hardware paging mechanism. The Linux software
accommodates the two-level scheme by defining the size of the page middle directory as
one. Note that all references to an extra level of indirection are optimized away at com-
pile time, not at run time. Therefore, there is no performance overhead for using
generic three-level design on platforms which support only two levels in hardware.

Page Allocation To enhance the efficiency of reading in and writing out pages to
and from main memory, Linux defines a mechanism for dealing with contiguous
blocks of pages mapped into contiguous blocks of page frames. For this purpose, the
buddy system is used.The kernel maintains a list of contiguous page frame groups of
fixed size; a group may consist of 1, 2, 4, 8, 16, or 32 page frames. As pages are allo-
cated and deallocated in main memory, the available groups are split and merged
using the buddy algorithm.

Page Replacement Algorithm The Linux page replacement algorithm is
based on the clock algorithm described in Section 8.2 (see Figure 8.16). In the sim-
ple clock algorithm, a use bit and a modify bit are associated with each page in main
memory. In the Linux scheme, the use bit is replaced with an 8-bit age variable. Each
time that a page is accessed, the age variable is incremented. In the background,
Linux periodically sweeps through the global page pool and decrements the age
variable for each page as it rotates through all the pages in main memory. A page
with an age of 0 is an “old” page that has not been referenced in some time and is
the best candidate for replacement. The larger the value of age, the more frequently
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Figure 8.25 Address Translation in Linux Virtual Memory Scheme
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a page has been used in recent times and the less eligible it is for replacement. Thus,
the Linux algorithm is a form of least frequently used policy.

Kernel Memory Allocation

The Linux kernel memory capability manages physical main memory page frames.
Its primary function is to allocate and deallocate frames for particular uses. Possible
owners of a frame include user-space processes (i.e., the frame is part of the virtual
memory of a process that is currently resident in real memory), dynamically allocated
kernel data, static kernel code, and the page cache.7

The foundation of kernel memory allocation for Linux is the page allocation
mechanism used for user virtual memory management. As in the virtual memory
scheme, a buddy algorithm is used so that memory for the kernel can be allocated
and deallocated in units of one or more pages. Because the minimum amount of
memory that can be allocated in this fashion is one page, the page allocator alone
would be inefficient because the kernel requires small short-term memory chunks
in odd sizes. To accommodate these small chunks, Linux uses a scheme known as
slab allocation [BONW94] within an allocated page. On a Pentium/x86 machine, the
page size is 4 Kbytes, and chunks within a page may be allocated of sizes 32, 64, 128,
252, 508, 2040, and 4080 bytes.

The slab allocator is relatively complex and is not examined in detail here; a
good description can be found in [VAHA96]. In essence, Linux maintains a set of
linked lists, one for each size of chunk. Chunks may be split and aggregated in a
manner similar to the buddy algorithm, and moved between lists accordingly.

8.5 WINDOWS MEMORY MANAGEMENT

The Windows virtual memory manager controls how memory is allocated and how
paging is performed. The memory manager is designed to operate over a variety
of platforms and use page sizes ranging from 4 Kbytes to 64 Kbytes. Intel and
AMD64 platforms have 4096 bytes per page and Intel Itanium platforms have
8192 bytes per page.

Windows Virtual Address Map

On 32-bit platforms, each Windows user process sees a separate 32-bit address
space, allowing 4 Gbytes of virtual memory per process. By default, a portion of this
memory is reserved for the operating system, so each user actually has 2 Gbytes of
available virtual address space and all processes share the same 2 Gbytes of system
space. There an option that allows user space to be increased to 3 Gbytes, leaving 1
Gbyte for system space. This feature is intended to support large memory-intensive
applications on servers with multiple gigabytes of RAM, and that the use of the
larger address space can dramatically improve performance for applications such as
decision support or data mining.

7The page cache has properties similar to a disk buffer, described in this chapter, as well as a disk cache,
described in Chapter 11. We defer a discussion of the Linux page cache to Chapter 11.
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t4: T1 attempts to enter its critical section but is blocked because the sema-
phore is locked by T3. T3 is immediately and temporarily assigned the same
priority as T1. T3 resumes execution in its critical section.

t5: T2 is ready to execute but, because T3 now has a higher priority, T2 is unable
to preempt T3.

t6: T3 leaves its critical section and unlocks the semaphore: its priority level is
downgraded to its previous default level. T1 preempts T3, locks the sema-
phore, and enters its critical section.

t7: T1 is suspended for some reason unrelated to T2, and T2 begins executing.

This was the approach taken to solving the Pathfinder problem.
In the priority ceiling approach, a priority is associated with each resource. The

priority assigned to a resource is one level higher than the priority of its highest-priority
user.The scheduler then dynamically assigns this priority to any task that accesses the
resource. Once the task finishes with the resource, its priority returns to normal.

10.3 LINUX SCHEDULING

For Linux 2.4 and earlier, Linux provided a real-time scheduling capability coupled
with a scheduler for non-real-time processes that made use of the traditional UNIX
scheduling algorithm described in Section 9.3. Linux 2.6 includes essentially the
same real-time scheduling capability as previous releases and a substantially revised
scheduler for non-real-time processes. We examine these two areas in turn.

Real-Time Scheduling

The three Linux scheduling classes are

• SCHED_FIFO: First-in-first-out real-time threads
• SCHED_RR: Round-robin real-time threads
• SCHED_OTHER: Other, non-real-time threads

Within each class, multiple priorities may be used, with priorities in the real-time
classes higher than the priorities for the SCHED_OTHERclass.The default values are as
follows: Real-time priority classes range from 0 to 99 inclusively, and SCHED_OTHER
classes range from 100 to 139.A lower number equals a higher priority.

For FIFO threads, the following rules apply:

1. The system will not interrupt an executing FIFO thread except in the follow-
ing cases:
a. Another FIFO thread of higher priority becomes ready.
b. The executing FIFO thread becomes blocked waiting for an event, such as I/O.
c. The executing FIFO thread voluntarily gives up the processor following a

call to the primitive sched_yield.
2. When an executing FIFO thread is interrupted, it is placed in the queue associated

with its priority.

10.3 / LINUX SCHEDULING 481
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3. When a FIFO thread becomes ready and if that thread has a higher priority
than the currently executing thread, then the currently executing thread is pre-
empted and the highest-priority ready FIFO thread is executed. If more than
one thread has that highest priority, the thread that has been waiting the
longest is chosen.

The SCHED_RR policy is similar to the SCHED_FIFO policy, except for the ad-
dition of a timeslice associated with each thread. When a SCHED_RR thread has ex-
ecuted for its timeslice, it is suspended and a real-time thread of equal or higher
priority is selected for running.

Figure 10.11 is an example that illustrates the distinction between FIFO and
RR scheduling. Assume a process has four threads with three relative priorities as-
signed as shown in Figure 10.11a. Assume that all waiting threads are ready to exe-
cute when the current thread waits or terminates and that no higher-priority thread is
awakened while a thread is executing. Figure 10.11b shows a flow in which all of the
threads are in the SCHED_FIFO class. Thread D executes until it waits or terminates.
Next, although threads B and C have the same priority, thread B starts because it has
been waiting longer than thread C. Thread B executes until it waits or terminates,
then thread C executes until it waits or terminates. Finally, thread A executes.

Figure 10.11c shows a sample flow if all of the threads are in the SCHED_RR
class. Thread D executes until it waits or terminates. Next, threads B and C are time
sliced, because they both have the same priority. Finally, thread A executes.

The final scheduling class is SCHED_OTHER. A thread in this class can only
execute if there are no real-time threads ready to execute.

Non-Real-Time Scheduling

The Linux 2.4 scheduler for the SCHED_OTHER class did not scale well with increas-
ing number of processors and increasing number of processes.The drawbacks of this
scheduler include the following:

• The Linux 2.4 scheduler uses a single runqueue for all processors in a symmet-
ric multiprocessing system (SMP). This means a task can be scheduled on any
processor, which can be good for load balancing but bad for memory caches.

Maximum

(a) Relative thread priorities (b) Flow with FIFO scheduling

D

D B C A
MiddleC

MiddleB

MinimumA

(c) Flow with RR scheduling

D B C B C A

Figure 10.11 Example of Linux Real-Time Scheduling
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For example, suppose a task executed on CPU-1, and its data were in that
processor’s cache. If the task got rescheduled to CPU-2, its data would need to
be invalidated in CPU-1 and brought into CPU-2.

• The Linux 2.4 scheduler uses a single runqueue lock. Thus, in an SMP system,
the act of choosing a task to execute locks out any other processor from ma-
nipulating the runqueues. The result is idle processors awaiting release of the
runqueue lock and decreased efficiency.

• Preemption is not possible in the Linux 2.4 scheduler; this means that a
lower-priority task can execute while a higher-priority task waited for it to
complete.

To correct these problems, Linux 2.6 uses a completely new priority scheduler
known as the O(1) scheduler.5 The scheduler is designed so that the time to select
the appropriate process and assign it to a processor is constant, regardless of the
load on the system or the number of processors.

The kernel maintains two scheduling data structure for each processor in the
system, of the following form (Figure 10.12):

struct prio_array {

int nr_active; /* number of tasks in this array*/

unsigned long bitmap[BITMAP_SIZE]; /* priority bitmap */

struct list_head queue[MAX_PRIO]; /* priority queues */

A separate queue is maintained for each priority level. The total number of
queues in the structure is MAX_PRIO, which has a default value of 140.The structure
also includes a bitmap array of sufficient size to provide one bit per priority level.
Thus, with 140 priority levels and 32-bit words,BITMAP_SIZE has a value of 5. This
creates a bitmap of 160 bits, of which 20 bits are ignored.The bitmap indicates which
queues are not empty. Finally, nr_active indicates the total number of tasks pre-
sent on all queues. Two structures are maintained: an active queues structure and an
expired queues structure.

Initially, both bitmaps are set to all zeroes and all queues are empty. As a
process becomes ready, it is assigned to the appropriate priority queue in the active
queues structure and is assigned the appropriate timeslice. If a task is preempted be-
fore it completes its timeslice, it is returned to an active queue. When a task com-
pletes its timeslice, it goes into the appropriate queue in the expired queues
structure and is assigned a new timeslice.All scheduling is done from among tasks in
the active queues structure. When the active queues structure is empty, a simple
pointer assignment results in a switch of the active and expired queues, and schedul-
ing continues.

Scheduling is simple and efficient. On a given processor, the scheduler picks
the highest-priority nonempty queue. If multiple tasks are in that queue, the tasks
are scheduled in round-robin fashion.

5The term O(1) is an example of the “big-O” notation, used for characterizing the time complexity of
algorithms. Appendix D explains this notation.
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Linux also includes a mechanism for moving tasks from the queue lists of
one processor to that of another. Periodically, the scheduler checks to see if there
is a substantial imbalance among the number of tasks assigned to each processor.
To balance the load, the schedule can transfer some tasks. The highest priority ac-
tive tasks are selected for transfer, because it is more important to distribute high-
priority tasks fairly.

Calculating Priorities and Timeslices Each non-real-time task is assigned
an initial priority in the range of 100 to 139, with a default of 120. This is the task’s
static priority and is specified by the user. As the task executes, a dynamic priority
is calculated as a function of the task’s static priority and its execution behavior.
The Linux scheduler is designed to favor I/O-bound tasks over processor-bound
tasks. This preference tends to provide good interactive response. The technique
used by Linux to determine the dynamic priority is to keep a running tab on how
much time a process sleeps (waiting for an event) versus how much time the
process runs. In essence, a task that spends most of its time sleeping is given a
higher priority.

Timeslices are assigned in the range of 10 ms to 200 ms. In general, higher-
priority tasks are assigned larger timeslices.

140-bit priority array for active queues

140-bit priority array for expired queues

Bit 0
(priority 0)

Highest-priority
nonempty

active queue

Bit 139
(priority 139)

Active queues:
140 queues by priority;
each queue contains ready
tasks for that priority

Expired queues:
140 queues by priority;
each queue contains ready
tasks with expired timeslices
for that priority

Figure 10.12 Linux Scheduling Data Structures for Each Processor
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Relationship to Real-Time Tasks Real-time tasks are handled in a different
manner from non-real-time tasks in the priority queues.The following considerations
apply:

1. All real-time tasks have only a static priority; no dynamic priority changes are
made.

2. SCHED_FIFO tasks do not have assigned timeslices. Such tasks are scheduled in
FIFO discipline. If a SHED_FIFO task is blocked, it returns to the same priority
queue in the active queue list when it becomes unblocked.

3. Although SCHED_RR tasks do have assigned timeslices, they also are never
moved to the expired queue list. When a SCHED_RR task exhaust its timeslice,
it is returned to its priority queue with the same timeslice value. Timeslice val-
ues are never changed.

The effect of these rules is that the switch between the active queue list and
the expired queue list only happens when there are no ready real-time tasks waiting
to execute.

10.4 UNIX SVR4 SCHEDULING

The scheduling algorithm used in UNIX SVR4 is a complete overhaul of the sched-
uling algorithm used in earlier UNIX systems (described in Section 9.3). The new
algorithm is designed to give highest preference to real-time processes, next-highest
preference to kernel-mode processes, and lowest preference to other user-mode
processes, referred to as time-shared processes.6

The two major modifications implemented in SVR4 are as follows:

1. The addition of a preemptable static priority scheduler and the introduction of
a set of 160 priority levels divided into three priority classes.

2. The insertion of preemption points. Because the basic kernel is not preemptive,
it can only be split into processing steps that must run to completion without in-
terruption. In between the processing steps, safe places known as preemption
points have been identified where the kernel can safely interrupt processing and
schedule a new process.A safe place is defined as a region of code where all ker-
nel data structures are either updated and consistent or locked via a semaphore.

Figure 10.13 illustrates the 160 priority levels defined in SVR4. Each process is
defined to belong to one of three priority classes and is assigned a priority level
within that class. The classes are as follows:

• Real time (159–100): Processes at these priority levels are guaranteed to be
selected to run before any kernel or time-sharing process. In addition, real-time
processes can make use of preemption points to preempt kernel processes and
user processes.

• Kernel (99–60): Processes at these priority levels are guaranteed to be selected
to run before any time-sharing process but must defer to real-time processes.

6Time-shared processes are the processes that correspond to users in a traditional time-sharing system.
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Unbuffered I/O

Unbuffered I/O, which is simply DMA between device and process space, is always
the fastest method for a process to perform I/O. A process that is performing
unbuffered I/O is locked in main memory and cannot be swapped out. This reduces
the opportunities for swapping by tying up part of main memory, thus reducing the
overall system performance. Also, the I/O device is tied up with the process for the
duration of the transfer, making it unavailable for other processes.

UNIX Devices

Among the categories of devices recognized by UNIX are the following:

• Disk drives
• Tape drives
• Terminals
• Communication lines
• Printers

Table 11.5 shows the types of I/O suited to each type of device. Disk drives are
heavily used in UNIX, are block oriented, and have the potential for reasonable high
throughput.Thus, I/O for these devices tends to be unbuffered or via buffer cache.Tape
drives are functionally similar to disk drives and use similar I/O schemes.

Because terminals involve relatively slow exchange of characters, terminal I/O
typically makes use of the character queue. Similarly, communication lines require
serial processing of bytes of data for input or output and are best handled by character
queues. Finally, the type of I/O used for a printer will generally depend on its speed.
Slow printers will normally use the character queue, while a fast printer might employ
unbuffered I/O.A buffer cache could be used for a fast printer. However, because data
going to a printer are never reused, the overhead of the buffer cache is unnecessary.

11.9 LINUX I/O

In general terms, the Linux I/O kernel facility is very similar to that of other UNIX
implementation, such as SVR4. The Linux kernel associates a special file with each
I/O device driver. Block, character, and network devices are recognized. In this sec-
tion, we look at several features of the Linux I/O facility.

Table 11.5 Device I/O in UNIX

Unbuffered I/O Buffer Cache Character Queue

Disk drive X X

Tape drive X X

Terminals X

Communication lines X

Printers X X
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Windows Linux

I/O system is layered, using I/O Request Packets to
represent each request and then passing the requests
through layers of drivers (a data-driven architecture)

I/O uses a plug-in model, based on tables of routines
to implement the standard device functions—such as
open, read, write, ioctl, close

Layered drivers can extend functionality, such as
checking file data for viruses, or adding features such
as specialized encryption or compression
I/O is inherently asynchronous, as drivers at any layer
can generally queue a request for later processing
and return back to the caller

Only network I/O and direct I/O, which bypasses the
page cache, can be asynchronous in current versions
of Linux

Drivers can be dynamically loaded/unloaded Drivers can be dynamically loaded/unloaded
I/O devices and drivers named in the system 
namespace

I/O devices named in the file system; drivers accessed
through instances of a device

Advanced plug-and-play support based on dynamic
detection of devices through bus enumeration,
matching of drivers from a database, and dynamic
loading/unloading

Limited plug-and-play support

Advanced power-management including CPU 
clock-rate management, sleep states and system
hibernation

Limited power-management based on CPU clock-
rate management

I/O is prioritized according to thread priorities and
system requirements (such as high-priority access for
paging system when memory is low, and idle-priority
for background activities like the disk defragger)

Provides four different version of I/O scheduling,
including deadline-based scheduling and Complete
Fairness Queuing to allocate I/O fairly among all
processes

I/O completion ports provide high-performance
multi-threaded applications with an efficient way of
dealing with the completion of asynchronous I/O

WINDOWS/LINUX COMPARISON: I/O

Disk Scheduling

The default disk scheduler in Linux 2.4 is known as the Linus Elevator, which is a vari-
ation on the LOOK algorithm discussed in Section 11.5. For Linux 2.6, the Elevator
algorithm has been augmented by two additional algorithms: the deadline I/O sched-
uler and the anticipatory I/O scheduler [LOVE04].We examine each of these in turn.

The Elevator Scheduler The elevator scheduler maintains a single queue for
disk read and write requests and performs both sorting and merging functions on
the queue. In general terms, the elevator scheduler keeps the list of requests sorted
by block number. Thus, as the disk requests are handled, the drive moves in a single
direction, satisfying each request as it is encountered.This general strategy is refined
in the following manner.When a new request is added to the queue, four operations
are considered in order:

1. If the request is to the same on-disk sector or an immediately adjacent sector
to a pending request in the queue, then the existing request and the new re-
quest are merged into one request.
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2. If a request in the queue is sufficiently old, the new request is inserted at the tail
of the queue.

3. If there is a suitable location, the new request is inserted in sorted order.
4. If there is no suitable location, the new request is placed at the tail of the

queue.

Deadline Scheduler Operation 2 in the preceding list is intended to prevent
starvation of a request, but is not very effective [LOVE04]. It does not attempt to
service requests in a given time frame but merely stops insertion-sorting requests
after a suitable delay. Two problems manifest themselves with the elevator scheme.
The first problem is that a distant block request can be delayed for a substantial
time because the queue is dynamically updated. For example, consider the following
stream of requests for disk blocks: 20, 30, 700, 25. The elevator scheduler reorders
these so that the requests are placed in the queue as 20, 25, 30, 700, with 20 being the
head of the queue. If a continuous sequence of low-numbered block requests arrive,
then the request for 700 continues to be delayed.

An even more serious problem concerns the distinction between read and
write requests. Typically, a write request is issued asynchronously. That is, once a
process issues the write request, it need not wait for the request to actually be sat-
isfied. When an application issues a write, the kernel copies the data into an appro-
priate buffer, to be written out as time permits. Once the data are captured in the
kernel’s buffer, the application can proceed. However, for many read operations,
the process must wait until the requested data are delivered to the application be-
fore proceeding. Thus, a stream of write requests (for example, to place a large file
on the disk) can block a read request for a considerable time and thus block a
process.

To overcome these problems, the deadline I/O scheduler makes use of three
queues (Figure 11.14). Each incoming request is placed in the sorted elevator queue,
as before. In addition, the same request is placed at the tail of a read FIFO queue for

Sorted (elevator) queue

Read FIFO queue

Write FIFO queue

Figure 11.14 The Linux Deadline I/O Scheduler
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a read request or a write FIFO queue for a write request. Thus, the read and write
queues maintain a list of requests in the sequence in which the requests were made.
Associated with each request is an expiration time, with a default value of 0.5 sec-
onds for a read request and 5 seconds for a write request. Ordinarily, the scheduler
dispatches from the sorted queue.When a request is satisfied, it is removed from the
head of the sorted queue and also from the appropriate FIFO queue. However,
when the item at the head of one of the FIFO queues becomes older than its expira-
tion time, then the scheduler next dispatches from that FIFO queue, taking the
expired request, plus the next few requests from the queue. As each request is dis-
patched, it is also removed from the sorted queue.

The deadline I/O scheduler scheme overcomes the starvation problem and
also the read versus write problem.

Anticipatory I/O Scheduler The original elevator scheduler and the dead-
line scheduler both are designed to dispatch a new request as soon as the existing
request is satisfied, thus keeping the disk as busy as possible. This same policy ap-
plies to all of the scheduling algorithms discussed in Section 11.5. However, such a
policy can be counterproductive if there are numerous synchronous read requests.
Typically, an application will wait until a read request is satisfied and the data avail-
able before issuing the next request. The small delay between receiving the data for
the last read and issuing the next read enables the scheduler to turn elsewhere for a
pending request and dispatch that request.

Because of the principle of locality, it is likely that successive reads from the
same process will be to disk blocks that are near one another. If the scheduler were
to delay a short period of time after satisfying a read request, to see if a new nearby
read request is made, the overall performance of the system could be enhanced.This
is the philosophy behind the anticipatory scheduler, proposed in [IYER01], and im-
plemented in Linux 2.6.

In Linux, the anticipatory scheduler is superimposed on the deadline sched-
uler.When a read request is dispatched, the anticipatory scheduler causes the sched-
uling system to delay for up to 6 milliseconds, depending on the configuration.
During this small delay, there is a good chance that the application that issued the
last read request will issue another read request to the same region of the disk. If so,
that request will be serviced immediately. If no such read request occurs, the sched-
uler resumes using the deadline scheduling algorithm.

[LOVE04] reports on two tests of the Linux scheduling algorithms. The first
test involved the reading of a 200-MB file while doing a long streaming write in the
background. The second test involved doing a read of a large file in the background
while reading every file in the kernel source tree.The results are listed in the follow-
ing table:

I/O Scheduler and Kernel Test 1 Test 2
Linus elevator on 2.4 45 seconds 30 minutes, 28 seconds
Deadline I/O scheduler on 2.6 40 seconds 3 minutes, 30 seconds
Anticipatory I/O scheduler on 2.6 4.6 seconds 15 seconds
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As can be seen, the performance improvement depends on the nature of
the workload. But in both cases, the anticipatory scheduler provides a dramatic
improvement.

Linux Page Cache

In Linux 2.2 and earlier releases, the kernel maintained a page cache for reads and
writes from regular file system files and for virtual memory pages, and a separate
buffer cache for block I/O. For Linux 2.4 and later, there is a single unified page
cache that is involved in all traffic between disk and main memory.

The page cache confers two benefits. First, when it is time to write back dirty
pages to disk, a collection of them can be ordered properly and written out effi-
ciently. Second, because of the principle of temporal locality, pages in the page cache
are likely to be referenced again before they are flushed from the cache, thus saving
a disk I/O operation.

Dirty pages are written back to disk in two situations:

• When free memory falls below a specified threshold, the kernel reduces the
size of the page cache to release memory to be added to the free memory pool.

• When dirty pages grow older than a specified threshold, a number of dirty
pages are written back to disk.

11.10 WINDOWS I/O

Figure 11.15 shows the key kernel mode components related to the Windows I/O
manager. The I/O manager is responsible for all I/O for the operating system and
provides a uniform interface that all types of drivers can call.

Basic I/O Facilities

The I/O manager works closely with four types of kernel components:

• Cache manager: The cache manager handles file caching for all file systems. It
can dynamically increase and decrease the size of the cache devoted to a par-
ticular file as the amount of available physical memory varies. The system

I/O manager

Cache
manager

File system
drivers

Network
drivers

Hardware
device drivers

Figure 11.15 Windows I/O Manager
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Access Control Lists in UNIX

Many modern UNIX and UNIX-based operating systems support access control
lists, including FreeBSD, OpenBSD, Linux, and Solaris. In this section, we describe
the FreeBSD approach, but other implementations have essentially the same fea-
tures and interface. The feature is referred to as extended access control list, while
the traditional UNIX approach is referred to as minimal access control list.

FreeBSD allows the administrator to assign a list of UNIX user IDs and groups
to a file by using the setfacl command.Any number of users and groups can be associ-
ated with a file, each with three protection bits (read, write, execute), offering a flexible
mechanism for assigning access rights. A file need not have an ACL but may be pro-
tected solely by the traditional UNIX file access mechanism. FreeBSD files include an
additional protection bit that indicates whether the file has an extended ACL.

FreeBSD and most UNIX implementations that support extended ACLs use
the following strategy (e.g., Figure 12.16b):

1. The owner class and other class entries in the 9-bit permission field have the
same meaning as in the minimal ACL case.

2. The group class entry specifies the permissions for the owner group for this file.
These permissions represent the maximum permissions that can be assigned to
named users or named groups, other than the owning user. In this latter role, the
group class entry functions as a mask.

3. Additional named users and named groups may be associated with the file,
each with a 3-bit permission field. The permissions listed for a named user or
named group are compared to the mask field. Any permission for the named
user or named group that is not present in the mask field is disallowed.

When a process requests access to a file system object, two steps are per-
formed. Step 1 selects the ACL entry that most closely matches the requesting
process. The ACL entries are looked at in the following order: owner, named users,
(owning or named) groups, others. Only a single entry determines access. Step 2
checks if the matching entry contains sufficient permissions. A process can be a
member in more than one group; so more than one group entry can match. If any of
these matching group entries contain the requested permissions, one that contains
the requested permissions is picked (the result is the same no matter which entry is
picked). If none of the matching group entries contains the requested permissions,
access will be denied no matter which entry is picked.

12.9 LINUX VIRTUAL FILE SYSTEM

Linux includes a versatile and powerful file handling facility, designed to support a
wide variety of file management systems and file structures. The approach taken in
Linux is to make use of a virtual file system (VFS), which presents a single, uniform
file system interface to user processes. The VFS defines a common file model that is
capable of representing any conceivable file system’s general feature and behavior.
The VFS assumes that files are objects in a computer’s mass storage memory that
share basic properties regardless of the target file system or the underlying processor
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hardware. Files have symbolic names that allow them to be uniquely identified within
a specific directory within the file system. A file has an owner, protection against
unauthorized access or modification, and a variety of other properties. A file may be
created, read from, written to, or deleted. For any specific file system, a mapping
module is needed to transform the characteristics of the real file system to the char-
acteristics expected by the virtual file system.

Figure 12.17 indicates the key ingredients of the Linux file system strategy. A
user process issues a file system call (e.g., read) using the VFS file scheme. The VFS
converts this into an internal (to the kernel) file system call that is passed to a map-
ping function for a specific file system [e.g., IBM’s Journaling File System (JFS)]. In
most cases, the mapping function is simply a mapping of file system functional calls
from one scheme to another. In some cases, the mapping function is more complex.
For example, some file systems use a file allocation table (FAT), which stores the po-
sition of each file in the directory tree. In these file systems, directories are not files.
For such file systems, the mapping function must be able to construct dynamically,
and when needed, the files corresponding to the directories. In any case, the original
user file system call is translated into a call that is native to the target file system.
The target file system software is then invoked to perform the requested function on
a file or directory under its control and secondary storage. The results of the opera-
tion are then communicated back to the user in a similar fashion.

Figure 12.17 Linux Virtual File System Context

User process

I/O request

System call

Linux kernel

Hardware

System calls interface

Virtual file
system (VFS)

IBM JFS DOS FS NTFS ext2 FS

Page cache

Device drivers

Disk controller
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Figure 12.18 indicates the role that VFS plays within the Linux kernel. When
a process initiates a file-oriented system call (e.g., read), the kernel calls a function
in the VFS. This function handles the file-system-independent manipulations and
initiates a call to a function in the target file system code. This call passes through a
mapping function that converts the call from the VFS into a call to the target file
system. The VFS is independent of any file system, so the implementation of a map-
ping function must be part of the implementation of a file system on Linux. The tar-
get file system converts the file system request into device-oriented instructions that
are passed to a device driver by means of page cache functions.

VFS is an object-oriented scheme. Because it is written in C, rather than a lan-
guage that supports object programming (such as C++ or Java), VFS objects are im-
plemented simply as C data structures. Each object contains both data and pointers
to file-system-implemented functions that operate on data. The four primary object
types in VFS are as follows:

• Superblock object: Represents a specific mounted file system
• Inode object: Represents a specific file
• Dentry object: Represents a specific directory entry
• File object: Represents an open file associated with a process

This scheme is based on the concepts used in UNIX file systems, as described in
Section 12.7.The key concepts of UNIX file system to remember are the following.A
file system consists of a hierarchal organization of directories.A directory is the same
as what is knows as a folder on many non-UNIX platforms and may contain files
and/or other directories. Because a directory may contain other directories, a tree
structure is formed. A path through the tree structure from the root consists of a se-
quence of directory entries, ending in either a directory entry (dentry) or a file name.
In UNIX, a directory is implemented as a file that lists the files and directories con-
tained within it. Thus, file operations can be performed on either files or directories.

The Superblock Object

The superblock object stores information describing a specific file system. Typically,
the superblock corresponds to the file system superblock or file system control
block, which is stored in a special sector on disk.

Figure 12.18 Linux Virtual File System Concept
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The superblock object consists of a number of data items. Examples include
the following:

• The device that this file system is mounted on
• The basic block size of the file system
• Dirty flag, to indicate that the superblock has been changed but not written

back to disk
• File system type
• Flags, such as a read-only flag
• Pointer to the root of the file system directory
• List of open files
• Semaphore for controlling access to the file system
• List of superblock operations

The last item on the preceding list refers to an operations object contained
within the superblock object. The operations object defines the object methods
(functions) that the kernel can invoke against the superblock object. The methods
defined for the superblock object include the following:

• read_inode: Read a specified inode from a mounted file system.
• write_inode:Write given inode to disk.
• put_inode: Release inode.
• delete_inode: Delete inode from disk.
• notify_change: Called when inode attributes are changed.
• put_super: Called by the VFS on unmount to release the given superblock.
• write_super: Called when the VFS decides that the superblock needs to be

written to disk.
• statfs: Obtain file system statistics.
• remount_fs: Called by the VFS when the file system is remounted with new

mount options.
• clear_inode: Release inode and clear any pages containing related data.

The Inode Object

An inode is associated with each file. The inode object holds all the information
about a named file except its name and the actual data contents of the file. Items
contained in an inode object include owner, group, permissions, access times for a
file, size of data it holds, and number of links.

The inode object also includes an inode operations object that describes the
file system’s implemented functions that the VFS can invoke on an inode.The meth-
ods defined for the inode object include the following:

• create: Creates a new inode for a regular file associated with a dentry ob-
ject in some directory

• lookup: Searches a directory for an inode corresponding to a file name
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• mkdir: Creates a new inode for a directory associated with a dentry object in
some directory

The Dentry Object

A dentry (directory entry) is a specific component in a path.The component may be
either a directory name or a file name. Dentry objects facilitate access to files and
directories and are used in a dentry cache for that purpose. The dentry object in-
cludes a pointer to the inode and superblock. It also includes a pointer to the parent
dentry and pointers to any subordinate dentrys.

The File Object

The file object is used to represent a file opened by a process. The object is created
in response to the open() system call and destroyed in response to the close() sys-
tem call. The file object consists of a number of items, including the following:

• Dentry object associated with the file
• File system containing the file
• File objects usage counter
• User’s user ID
• User’s group ID
• File pointer, which is the current position in the file from which the next oper-

ation will take place

The file object also includes an inode operations object that describes the file
system’s implemented functions that the VFS can invoke on a file object. The meth-
ods defined for the file object include read, write, open, release, and lock.

12.10 WINDOWS FILE SYSTEM

The developers of Windows designed a new file system, the New Technology File
System (NTFS), that is intended to meet high-end requirements for workstations
and servers. Examples of high-end applications include the following:

• Client/server applications such as file servers, compute servers, and database
servers

• Resource-intensive engineering and scientific applications
• Network applications for large corporate systems

This section provides an overview of NTFS.

Key Features of NTFS

NTFS is a flexible and powerful file system built, as we shall see, on an elegantly sim-
ple file system model. The most noteworthy features of NTFS include the following:

• Recoverability: High on the list of requirements for the new Windows file
system was the ability to recover from system crashes and disk failures. In the
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and processes on all nodes use the same pathname to locate a file. To implement
global file access, MC includes a proxy file system built on top of the existing Solaris
file system at the vnode interface. The vfs/vnode operations are converted by a
proxy layer into object invocations (see Figure 16.17b). The invoked object may re-
side on any node in the system.The invoked object performs a local vnode/vfs oper-
ation on the underlying file system. Neither the kernel nor the existing file systems
have to be modified to support this global file environment.

To reduce the number of remote object invocations, caching is used. Sun Clus-
ter supports caching of file contents, directory information, and file attributes.

16.7 BEOWULF AND LINUX CLUSTERS

In 1994, the Beowulf project was initiated under the sponsorship of the NASA High
Performance Computing and Communications (HPCC) project. Its goal was to
investigate the potential of clustered PCs for performing important computation
tasks beyond the capabilities of contemporary workstations at minimum cost. Today,
the Beowulf approach is widely implemented and is perhaps the most important
cluster technology available.

Beowulf Features

Key features of Beowulf include the following [RIDG97]:

• Mass market commodity components
• Dedicated processors (rather than scavenging cycles from idle workstations)
• A dedicated, private network (LAN or WAN or internetted combination)
• No custom components

• Easy replication from multiple vendors

• Scalable I/O

• A freely available software base
• Use of freely available distribution computing tools with minimal changes
• Return of the design and improvements to the community

Although elements of Beowulf software have been implemented on a number
of different platforms, the most obvious choice for a base is Linux, and most Beowulf
implementations use a cluster of Linux workstations and/or PCs. Figure 16.18
depicts a representative configuration. The cluster consists of a number of work-
stations, perhaps of differing hardware platforms, all running the Linux operating
system. Secondary storage at each workstation may be made available for distrib-
uted access (for distributed file sharing, distributed virtual memory, or other uses).
The cluster nodes (the Linux systems) are interconnected with a commodity net-
working approach, typically Ethernet.The Ethernet support may be in the form of a
single Ethernet switch or an interconnected set of switches. Commodity Ethernet
products at the standard data rates (10 Mbps, 100 Mbps, 1 Gbps) are used.
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Beowulf Software

The Beowulf software environment is implemented as an add-on to commercially
available, royalty-free base Linux distributions. The principal source of open-source
Beowulf software is the Beowulf site at www.beowulf.org, but numerous other orga-
nizations also offer free Beowulf tools and utilities.

Each node in the Beowulf cluster runs its own copy of the Linux kernel and
can function as an autonomous Linux system. To support the Beowulf cluster con-
cept, extensions are made to the Linux kernel to allow the individual nodes to
participate in a number of global namespaces. The following are examples of Be-
owulf system software:

• Beowulf distributed process space (BPROC): This package allows a process
ID space to span multiple nodes in a cluster environment and also provides
mechanisms for starting processes on other nodes.The goal of this package is to
provide key elements needed for a single system image on Beowulf cluster.
BPROC provides a mechanism to start processes on remote nodes without
ever logging into another node and by making all the remote processes visible
in the process table of the cluster’s front-end node.

• Beowulf Ethernet Channel Bonding: This is a mechanism that joins multiple
low-cost networks into a single logical network with higher bandwidth. The
only additional work over using single network interface is the computation-
ally simple task of distributing the packets over the available device transmit
queues. This approach allows load balancing over multiple Ethernets con-
nected to Linux workstations.

• Pvmsync: This is a programming environment that provides synchronization
mechanisms and shared data objects for processes in a Beowulf cluster.

Figure 16.18 Generic Beowulf Configuration
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• EnFuzion: EnFuzion consists of a set of tools for doing parametric computing,
as described in Section 16.4. Parametric computing involves the execution of a
program as a large number of jobs, each with different parameters or starting
conditions. EnFusion emulates a set of robot users on a single root node ma-
chine, each of which will log into one of the many clients that form a cluster.
Each job is set up to run with a unique, programmed scenario, with an appro-
priate set of starting conditions [KAPP00].

16.8 SUMMARY

Client/server computing is the key to realizing the potential of information systems and net-
works to improve productivity significantly in organizations. With client/server computing,
applications are distributed to users on single-user workstations and personal computers. At
the same time resources that can and should be shared are maintained on server systems that
are available to all clients. Thus, the client/server architecture is a blend of decentralized and
centralized computing.

Typically, the client system provides a graphical user interface (GUI) that enables a
user to exploit a variety of applications with minimal training and relative ease. Servers sup-
port shared utilities, such as database management systems. The actual application is divided
between client and server in a way intended to optimize ease of use and performance.

The key mechanism required in any distributed system is interprocess communication.
Two techniques are in common use. A message-passing facility generalizes the use of mes-
sages within a single system. The same sorts of conventions and synchronization rules apply.
Another approach is the use of the remote procedure call. This is a technique by which two
programs on different machines interact using procedure call/return syntax and semantics.
Both the called and calling program behave as if the partner program were running on the
same machine.

A cluster is a group of interconnected, whole computers working together as a unified
computing resource that can create the illusion of being one machine. The term whole com-
puter means a system that can run on its own, apart from the cluster.

16.9 RECOMMENDED READING AND WEB SITES

[SING99] provides good coverage of the topics in this chapter. [BERS96] provides a
good technical discussion of the design issues involved in allocating applications to
client and server and in middleware approaches; the book also discusses products
and standardization efforts. A good overview of middleware technology and prod-
ucts is [BRIT04]. [MENA05] provides a performance comparison of remote proce-
dure calls and distributed message passing.

[TANE85] is a survey of distributed operating systems that covers both dis-
tributed process communication and distributed process management. [CHAN90]
provides an overview of distributed message passing operating systems. [TAY90] is
a survey of the approach taken by various operating systems in implementing re-
mote procedure calls.

A thorough treatment of clusters can be found in [BUYY99a] and [BUYY99b].
The former has a good treatment of Beowulf, which is also nicely covered in
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17.4 LINUX NETWORKING

Linux supports a variety of networking architectures, in particular TCP/IP by means
of Berkeley Sockets. Figure 17.7 shows the overall structure of Linux support for
TCP/IP. User-level processes interact with networking devices by means of system
calls to the Sockets interface. The Sockets module in turn interacts with a software
package in the kernel that handles transport-layer (TCP and UDP) and IP protocol
operations.This software package exchanges data with the device driver for the net-
work interface card.

Figure 17.7 Linux Kernel Components for TCP/IP Processing
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Linux implements sockets as special files. Recall from Chapter 12 that, in
UNIX systems, a special file is one that contains no data but provides a mechanism
to map physical devices to file names. For every new socket, the Linux kernel cre-
ates a new inode in the sockfs special file system.

Figure 17.7 depicts the relationships among various kernel modules involved
in sending and receiving TCP/IP-based data blocks. The remainder of this section
looks at the sending and receiving facilities.

Sending Data

A user process uses the sockets calls described in Section 17.3 create new sockets,
set up connections to remote sockets, and send and receive data. To send data, the
user process writes data to the socket with the following file system call:

write(sockfd, mesg, mesglen)

where mesglen is the length of the mesg buffer in bytes.
This call triggers the write method of the file object associated with the

sockfd file descriptor. The file descriptor indicates whether this is a socket set up
for TCP or UDP. The kernel allocates the appropriate data structures and invokes
the appropriate sockets-level function to pass data to either a TCP module or a
UDP module. The corresponding functions are tcp_sendmsg() and udp_
sendmsg(), respectively. The transport-layer module allocates a data structure of
the TCP or UPD header and performs ip_build_xmit() to invoke the IP-layer
processing module. This module builds an IP datagram for transmission and places
it in a transmission buffer for this socket. The IP-layer module then performs
dev_queue_ xmit() to queue the socket buffer for later transmission via the net-
work device driver. When it is available, the network device driver will transmit
buffered packets.

Receiving Data

Data reception is an unpredictable event and so involves the use of interrupts and
deferrable functions. When an IP datagram arrives, the network interface controller
issues a hardware interrupt to the corresponding network device driver. The inter-
rupt triggers an interrupt service routine that handles the interrupt as part of the
network device driver module. The driver allocates a kernel buffer for the incoming
data block and transfers the data from the device controller to the buffer.The driver
then performs netif_rx() to invoke a lower-level packet reception routine. In
essence, the netif_rx() function places the incoming data block in a queue and
then issues a soft interrupt request (softirq) so that the queued data will eventu-
ally be processed.The action to be performed when the softirq is processed is the
net_rx_action() function.

Once a softirq has been queued, processing of this packet is halted until the
kernel executes the softirq function, which is equivalent to saying until the ker-
nel responds to this soft interrupt request and executes the function (in this case,
net_rx_action()) associated with this soft interrupt. There are three places in
the kernel, where the kernel checks to see if any softirqs are pending: when a
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hardware interrupt has been processed, when an application-level process invokes a
system call, and when a new process is scheduled for execution.

When the net_rx_action() function is performed, it retrieves the queued
packet and passes it on to the IP packet handler by means of an ip_rcv call.The IP
packet handler processes the IP header and then uses tcp_rcv or udp_rcv to in-
voke the transport-layer processing module. The transport-layer module processes
the transport-layer header and passes the data to the user through the sockets inter-
face by means of a wake_up_interruptible() call, which awakens the receiv-
ing process.

17.5 SUMMARY

The communication functionality required for distributed applications is quite complex. This
functionality is generally implemented as a structured set of modules. The modules are
arranged in a vertical, layered fashion, with each layer providing a particular portion of the
needed functionality and relying on the next lower layer for more primitive functions. Such a
structure is referred to as a protocol architecture.

One motivation for the use of this type of structure is that it eases the task of design
and implementation. It is standard practice for any large software package to break up the
functions into modules that can be designed and implemented separately. After each mod-
ule is designed and implemented, it can be tested. Then the modules can be combined and
tested together. This motivation has led computer vendors to develop proprietary layered
protocol architectures. An example of this is the Systems Network Architecture (SNA) of
IBM.

A layered architecture can also be used to construct a standardized set of communica-
tion protocols. In this case, the advantages of modular design remain. But, in addition, a lay-
ered architecture is particularly well suited to the development of standards. Standards can
be developed simultaneously for protocols at each layer of the architecture.This breaks down
the work to make it more manageable and speeds up the standards-development process.The
TCP/IP protocol architecture is the standard architecture used for this purpose.This architec-
ture contains five layers. Each layer provides a portion of the total communications function
required for distributed applications. Standards have been developed for each layer. Devel-
opment work continues, particularly at the top (application) layer, where new distributed
applications are still being defined.

17.6 RECOMMENDED READING AND WEB SITES

[STAL07] provides a detailed description of the TCP/IP model and of the standards
at each layer of the model. A very useful reference work on TCP/IP is [RODR02],
which covers the spectrum of TCP/IP-related protocols in a technically concise but
thorough fashion.

An excellent concise introduction to using Sockets is [DONA01]; another
good overview is [HALL01]. [MCKU05] and [WRIG95] provide details of Sockets
implementation.

[BOVE06] provides good coverage of Linux networking. Another useful
source is [INSO02a] and [INSO02b].
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